79964 If f(x)=x1+x+x(1+x)(1+2x)+x(1+2x)(1+3x) +…∞, then
(B) : Given,f(x)=x1+x+x(1+x)(1+2x)+x(1+2x)(1+3x)+……∞f(0)=0limx→0f(x)=limx→0(x+1)−11+x+(2x+1)−(x+1)(x+1)(2x+1)+(3x+1)−(2x+1)(3x+1)(2x+1)+….∞=limx→01−11+x+1x+1−12x+1+12x+1−13x+1+……∞=lim1=1∵f(0)≠limx→0f(x)∴f(x) is discontinuous for finite number of point
79965 If y=1t2−t−6 and t=1x−2, then the value of x which make the function y discontinuous are
(B) : Given,y=1t2−t−6 and t=1x−2∵t2−t−6=0t2−3t+2t−6=0t(t−3)+2(t−3)=0(t−3)(t+2)=0t=3,−2When, t=−21x−2=−2⇒x−2=−12x=2−12⇒x=3/2When, t=31x−2=3⇒x−2=13x=2+13⇒x=7/3When, x−2=0⇒x=2The value of x which make the function y discontinuous are x=2,3/2 and 7/3.
79966 A function is defined as followsf(x)={xmsin(1x),x≠00,x=0} what condition should be imposed on m, so that f(x) may be continuous at x=0 ?
(A) : Given, f(x)=xmsin(1x)f(0)=0For f(x) is continuous at x=0limx→0f(x)=f(0)limx→0xmsin1x=0Which is possible only when m>0Hence, f(x) is continuous when m>0
79968 Let f(x)={sinπx5x,x≠0k,x=0 if f(x) is continuous at x=0, then k is equal to
(A) : Given, f(x)=sinπx5x,x≠0f(0)=k,x=0∵f(x) is continuous at x=0f(0)=limx→0f(x).k=limx→0sinπx5x⇒k=limx→0sinπx5πx×πk=π5limx→0sinπxπx[∵limx→0sinxx=1]k=π5