Differentiability and Continuity of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79969 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) is

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Limits, Continuity and Differentiability

79970 \(f(x)=\left\{\begin{array}{l}\frac{\sin 3 x}{\sin x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous, if \(k\) is

1 3
2 0
3 -3
4 -1
Limits, Continuity and Differentiability

79971 The greatest value of \(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is:

1 1
2 2
3 3
4 \(1 / 3\)
Limits, Continuity and Differentiability

79972 If \(f(9)=9, f^{\prime}(9)=4\) and \(\lim _{x \rightarrow 9} \frac{f(x)-9}{x-9}=4\), then
\(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to:

1 2
2 4
3 -2
4 -4
Limits, Continuity and Differentiability

79969 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) is

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Limits, Continuity and Differentiability

79970 \(f(x)=\left\{\begin{array}{l}\frac{\sin 3 x}{\sin x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous, if \(k\) is

1 3
2 0
3 -3
4 -1
Limits, Continuity and Differentiability

79971 The greatest value of \(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is:

1 1
2 2
3 3
4 \(1 / 3\)
Limits, Continuity and Differentiability

79972 If \(f(9)=9, f^{\prime}(9)=4\) and \(\lim _{x \rightarrow 9} \frac{f(x)-9}{x-9}=4\), then
\(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to:

1 2
2 4
3 -2
4 -4
Limits, Continuity and Differentiability

79969 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) is

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Limits, Continuity and Differentiability

79970 \(f(x)=\left\{\begin{array}{l}\frac{\sin 3 x}{\sin x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous, if \(k\) is

1 3
2 0
3 -3
4 -1
Limits, Continuity and Differentiability

79971 The greatest value of \(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is:

1 1
2 2
3 3
4 \(1 / 3\)
Limits, Continuity and Differentiability

79972 If \(f(9)=9, f^{\prime}(9)=4\) and \(\lim _{x \rightarrow 9} \frac{f(x)-9}{x-9}=4\), then
\(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to:

1 2
2 4
3 -2
4 -4
Limits, Continuity and Differentiability

79969 The maximum value of \(f(x)=\frac{x}{4+x+x^{2}}\) on \([-1,1]\) is

1 \(-\frac{1}{3}\)
2 \(-\frac{1}{4}\)
3 \(\frac{1}{5}\)
4 \(\frac{1}{6}\)
Limits, Continuity and Differentiability

79970 \(f(x)=\left\{\begin{array}{l}\frac{\sin 3 x}{\sin x}, x \neq 0 \\ k, x=0\end{array}\right.\) is continuous, if \(k\) is

1 3
2 0
3 -3
4 -1
Limits, Continuity and Differentiability

79971 The greatest value of \(f(x)=(x+1)^{1 / 3}-(x-1)^{1 / 3}\) on \([0,1]\) is:

1 1
2 2
3 3
4 \(1 / 3\)
Limits, Continuity and Differentiability

79972 If \(f(9)=9, f^{\prime}(9)=4\) and \(\lim _{x \rightarrow 9} \frac{f(x)-9}{x-9}=4\), then
\(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to:

1 2
2 4
3 -2
4 -4