79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.
79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.
79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.
79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.