Differentiability and Continuity of Function
Limits, Continuity and Differentiability

79936 The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots .+a_{n}^{1 / x}}{n}\right)^{n x}\) \(a_{i}>0, i=1,2, \ldots . . n\), is

1 \(a_{1}+a_{2}+\ldots \ldots+a_{n}\)
2 \(e^{a_{1}+a_{2}+\ldots \ldots .+a_{n}}\)
3 \(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
4 \(a_{1} a_{2} a_{3} \ldots \ldots . a_{n}\)
Limits, Continuity and Differentiability

79938 For \(x>0, \lim _{x \rightarrow 0}\left\{(\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right\}\) is equal to

1 0
2 -1
3 1
4 2
Limits, Continuity and Differentiability

79939 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to :

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79940 If \(f: R \rightarrow R\) is defined by
\(f(x)=\left\{\begin{array}{cr}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, \text { if } x \neq 0 \\ a, \text { if } x=0\end{array}\right.\)
then the value of a so that \(f\) is continuous at 0 is

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

79941 The value of \(f(0)\) so that \(\frac{\left(-e^{x}+2^{x}\right)}{x}\) may be continuous at \(x=0\) is

1 \(\log \left(\frac{1}{2}\right)\)
2 0
3 4
4 \(-1+\log 2\)
Limits, Continuity and Differentiability

79936 The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots .+a_{n}^{1 / x}}{n}\right)^{n x}\) \(a_{i}>0, i=1,2, \ldots . . n\), is

1 \(a_{1}+a_{2}+\ldots \ldots+a_{n}\)
2 \(e^{a_{1}+a_{2}+\ldots \ldots .+a_{n}}\)
3 \(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
4 \(a_{1} a_{2} a_{3} \ldots \ldots . a_{n}\)
Limits, Continuity and Differentiability

79938 For \(x>0, \lim _{x \rightarrow 0}\left\{(\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right\}\) is equal to

1 0
2 -1
3 1
4 2
Limits, Continuity and Differentiability

79939 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to :

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79940 If \(f: R \rightarrow R\) is defined by
\(f(x)=\left\{\begin{array}{cr}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, \text { if } x \neq 0 \\ a, \text { if } x=0\end{array}\right.\)
then the value of a so that \(f\) is continuous at 0 is

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

79941 The value of \(f(0)\) so that \(\frac{\left(-e^{x}+2^{x}\right)}{x}\) may be continuous at \(x=0\) is

1 \(\log \left(\frac{1}{2}\right)\)
2 0
3 4
4 \(-1+\log 2\)
Limits, Continuity and Differentiability

79936 The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots .+a_{n}^{1 / x}}{n}\right)^{n x}\) \(a_{i}>0, i=1,2, \ldots . . n\), is

1 \(a_{1}+a_{2}+\ldots \ldots+a_{n}\)
2 \(e^{a_{1}+a_{2}+\ldots \ldots .+a_{n}}\)
3 \(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
4 \(a_{1} a_{2} a_{3} \ldots \ldots . a_{n}\)
Limits, Continuity and Differentiability

79938 For \(x>0, \lim _{x \rightarrow 0}\left\{(\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right\}\) is equal to

1 0
2 -1
3 1
4 2
Limits, Continuity and Differentiability

79939 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to :

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79940 If \(f: R \rightarrow R\) is defined by
\(f(x)=\left\{\begin{array}{cr}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, \text { if } x \neq 0 \\ a, \text { if } x=0\end{array}\right.\)
then the value of a so that \(f\) is continuous at 0 is

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

79941 The value of \(f(0)\) so that \(\frac{\left(-e^{x}+2^{x}\right)}{x}\) may be continuous at \(x=0\) is

1 \(\log \left(\frac{1}{2}\right)\)
2 0
3 4
4 \(-1+\log 2\)
Limits, Continuity and Differentiability

79936 The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots .+a_{n}^{1 / x}}{n}\right)^{n x}\) \(a_{i}>0, i=1,2, \ldots . . n\), is

1 \(a_{1}+a_{2}+\ldots \ldots+a_{n}\)
2 \(e^{a_{1}+a_{2}+\ldots \ldots .+a_{n}}\)
3 \(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
4 \(a_{1} a_{2} a_{3} \ldots \ldots . a_{n}\)
Limits, Continuity and Differentiability

79938 For \(x>0, \lim _{x \rightarrow 0}\left\{(\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right\}\) is equal to

1 0
2 -1
3 1
4 2
Limits, Continuity and Differentiability

79939 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to :

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79940 If \(f: R \rightarrow R\) is defined by
\(f(x)=\left\{\begin{array}{cr}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, \text { if } x \neq 0 \\ a, \text { if } x=0\end{array}\right.\)
then the value of a so that \(f\) is continuous at 0 is

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

79941 The value of \(f(0)\) so that \(\frac{\left(-e^{x}+2^{x}\right)}{x}\) may be continuous at \(x=0\) is

1 \(\log \left(\frac{1}{2}\right)\)
2 0
3 4
4 \(-1+\log 2\)
Limits, Continuity and Differentiability

79936 The value of \(\lim _{x \rightarrow \infty}\left(\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots \ldots .+a_{n}^{1 / x}}{n}\right)^{n x}\) \(a_{i}>0, i=1,2, \ldots . . n\), is

1 \(a_{1}+a_{2}+\ldots \ldots+a_{n}\)
2 \(e^{a_{1}+a_{2}+\ldots \ldots .+a_{n}}\)
3 \(\frac{a_{1}+a_{2}+\ldots \ldots+a_{n}}{n}\)
4 \(a_{1} a_{2} a_{3} \ldots \ldots . a_{n}\)
Limits, Continuity and Differentiability

79938 For \(x>0, \lim _{x \rightarrow 0}\left\{(\sin x)^{1 / x}+\left(\frac{1}{x}\right)^{\sin x}\right\}\) is equal to

1 0
2 -1
3 1
4 2
Limits, Continuity and Differentiability

79939 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to :

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79940 If \(f: R \rightarrow R\) is defined by
\(f(x)=\left\{\begin{array}{cr}\frac{2 \sin x-\sin 2 x}{2 x \cos x}, \text { if } x \neq 0 \\ a, \text { if } x=0\end{array}\right.\)
then the value of a so that \(f\) is continuous at 0 is

1 2
2 1
3 -1
4 0
Limits, Continuity and Differentiability

79941 The value of \(f(0)\) so that \(\frac{\left(-e^{x}+2^{x}\right)}{x}\) may be continuous at \(x=0\) is

1 \(\log \left(\frac{1}{2}\right)\)
2 0
3 4
4 \(-1+\log 2\)