Differentiability and Continuity of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79928 Evaluate \(\lim _{x \rightarrow 0} \frac{1}{x^{5}}\left(\sin ^{3} x-\tan ^{3} x\right)\)

1 0
2 1
3 -1
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

79929 Evaluate \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}\).

1 \(\pi / 2\)
2 \(\pi\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Limits, Continuity and Differentiability

79932 \(\lim _{x \rightarrow \pi / 2} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^{3}}=\) ?

1 \(1 / 8\)
2 0
3 \(1 / 32\)
4 \(\infty\)
Limits, Continuity and Differentiability

79935 If \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}\), then \(x\) is equal to

1 \(\sqrt{2}\)
2 \(3 \sqrt{2}\end{array}\)
3 \(5 \sqrt{2}\)
4 None of the above
Limits, Continuity and Differentiability

79928 Evaluate \(\lim _{x \rightarrow 0} \frac{1}{x^{5}}\left(\sin ^{3} x-\tan ^{3} x\right)\)

1 0
2 1
3 -1
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

79929 Evaluate \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}\).

1 \(\pi / 2\)
2 \(\pi\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Limits, Continuity and Differentiability

79932 \(\lim _{x \rightarrow \pi / 2} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^{3}}=\) ?

1 \(1 / 8\)
2 0
3 \(1 / 32\)
4 \(\infty\)
Limits, Continuity and Differentiability

79935 If \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}\), then \(x\) is equal to

1 \(\sqrt{2}\)
2 \(3 \sqrt{2}\end{array}\)
3 \(5 \sqrt{2}\)
4 None of the above
Limits, Continuity and Differentiability

79928 Evaluate \(\lim _{x \rightarrow 0} \frac{1}{x^{5}}\left(\sin ^{3} x-\tan ^{3} x\right)\)

1 0
2 1
3 -1
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

79929 Evaluate \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}\).

1 \(\pi / 2\)
2 \(\pi\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Limits, Continuity and Differentiability

79932 \(\lim _{x \rightarrow \pi / 2} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^{3}}=\) ?

1 \(1 / 8\)
2 0
3 \(1 / 32\)
4 \(\infty\)
Limits, Continuity and Differentiability

79935 If \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}\), then \(x\) is equal to

1 \(\sqrt{2}\)
2 \(3 \sqrt{2}\end{array}\)
3 \(5 \sqrt{2}\)
4 None of the above
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79928 Evaluate \(\lim _{x \rightarrow 0} \frac{1}{x^{5}}\left(\sin ^{3} x-\tan ^{3} x\right)\)

1 0
2 1
3 -1
4 \(\frac{-3}{2}\)
Limits, Continuity and Differentiability

79929 Evaluate \(\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}\).

1 \(\pi / 2\)
2 \(\pi\)
3 \(\pi / 4\)
4 \(\pi / 3\)
Limits, Continuity and Differentiability

79932 \(\lim _{x \rightarrow \pi / 2} \frac{\left(1-\tan \left(\frac{x}{2}\right)\right)(1-\sin x)}{\left(1+\tan \left(\frac{x}{2}\right)\right)(\pi-2 x)^{3}}=\) ?

1 \(1 / 8\)
2 0
3 \(1 / 32\)
4 \(\infty\)
Limits, Continuity and Differentiability

79935 If \(\lim _{x \rightarrow \frac{\pi}{4}} \frac{4 \sqrt{2}-(\cos x+\sin x)^{5}}{1-\sin 2 x}\), then \(x\) is equal to

1 \(\sqrt{2}\)
2 \(3 \sqrt{2}\end{array}\)
3 \(5 \sqrt{2}\)
4 None of the above