79928 Evaluate limx→01x5(sin3x−tan3x)
(D) : Given, limx→01x5(sin3x−tan3x)=limx→01x5tan3x(cos3x−1)=limx→0tan3xx3(cos3x−1x2)=limx→0tan3xx3⋅limx→0cos3x−1x2=1×limx→0cos3x−1x2Apply L-Hospital rule,limx→03cos2x⋅(−sinx)2x=limx→0−3cos2xsinx2xAgain using L-Hospital rule,=limx→0−3[cos2x⋅cosx+sinx⋅2cosx(−sinx)]2=limx→0−3(cos3x−2sin2x⋅cosx)2=−3(1−0)2=−32
79929 Evaluate limx→0sin(πcos2x)x2.
(B) : Given,limx→0sin(πcos2x)x2=limx→0sin{π(1−sin2x)}x2=limx→0sin(π−πsin2x)x2=limx→0sin(πsin2x)x2=limx→0{sin(πsin2x)πsin2x×πsin2xx2}=limx→0sin(πsin2x)πsin2x×π×limx→0sin2xx2=1×π×1=π
79932 limx→π/2(1−tan(x2))(1−sinx)(1+tan(x2))(π−2x)3= ?
(C) : limx→π2{1−tan(x2)}(1−sinx){1+tan(x2)}(π−2x)3=limx→π2{tanπ4−tanx2tanπ4+tanx2}(1−sinx)(π−2x)3=limx→π2tan(π4−x2)[1−cos(π2−x)](π−2x)3=limx→π2tan(π4−x2)(π−2x)2sin2(π4−x2)(π−2x)2=limx→π2tan(π4−x2)4(π4−x2)⋅2sin2(π4−x2)16(π4−x2)2=132limx→π2tan(π4−x2)(π4−x2)limx→π2sin2(π4−x2)(π4−x2)2=132×1×1=132
79935 If limx→π442−(cosx+sinx)51−sin2x, then x is equal to
(C) : limx→π442−(cosx+sinx)51−sin2x=limx→π442−(cosx+sinx)5(sinx−cosx)2Apply L-Hospital rule,=limx→π20−5(cosx+sinx)4⋅(−sinx+cosx)2(sinx−cosx)⋅(cosx+sinx)=limx→π45(cosx+sinx)4⋅(sinx−cosx)2(sinx−cosx)⋅(cosx+sinx)=limx→π452(cosx+sinx)3=52(12+12)3=52(22)3=52×(2)3=52