Differentiability and Continuity of Function
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79942 The set of points of discontinuity of the function
\(f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}\) is given by

1 \(\mathrm{R}\)
2 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{I}\right\}\)
3 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}\)
4 None of these
Limits, Continuity and Differentiability

79943 If \(f(x)=(1+x)^{2 / x}\) for \(x \neq 0\) and \(f(0)=e^{2}\) is

1 left continuous only at \(x=0\)
2 right continuous only at \(x=0\)
3 continuous at \(x=0\)
4 discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.

1 \(\frac{2}{3}, \frac{3}{2}\)
2 \(\frac{2}{3}, \mathrm{e}^{2 / 3}\)
3 \(\frac{3}{2}, \mathrm{e}^{3 / 2}\)
4 None of these
Limits, Continuity and Differentiability

79945 If \(f(x)=\left\{\begin{array}{ll}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.\) is continuous at \(x=\frac{\pi}{2}\), then

1 \(\mathrm{m}=1, \mathrm{n}=0\)
2 \(\mathrm{m}=\frac{\mathrm{n} \pi}{2}+1\)
3 \(\mathrm{n}=\mathrm{m} \frac{\pi}{2}\)
4 \(\mathrm{m}=\mathrm{n}=\frac{\pi}{2}\)
Limits, Continuity and Differentiability

79942 The set of points of discontinuity of the function
\(f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}\) is given by

1 \(\mathrm{R}\)
2 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{I}\right\}\)
3 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}\)
4 None of these
Limits, Continuity and Differentiability

79943 If \(f(x)=(1+x)^{2 / x}\) for \(x \neq 0\) and \(f(0)=e^{2}\) is

1 left continuous only at \(x=0\)
2 right continuous only at \(x=0\)
3 continuous at \(x=0\)
4 discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.

1 \(\frac{2}{3}, \frac{3}{2}\)
2 \(\frac{2}{3}, \mathrm{e}^{2 / 3}\)
3 \(\frac{3}{2}, \mathrm{e}^{3 / 2}\)
4 None of these
Limits, Continuity and Differentiability

79945 If \(f(x)=\left\{\begin{array}{ll}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.\) is continuous at \(x=\frac{\pi}{2}\), then

1 \(\mathrm{m}=1, \mathrm{n}=0\)
2 \(\mathrm{m}=\frac{\mathrm{n} \pi}{2}+1\)
3 \(\mathrm{n}=\mathrm{m} \frac{\pi}{2}\)
4 \(\mathrm{m}=\mathrm{n}=\frac{\pi}{2}\)
Limits, Continuity and Differentiability

79942 The set of points of discontinuity of the function
\(f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}\) is given by

1 \(\mathrm{R}\)
2 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{I}\right\}\)
3 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}\)
4 None of these
Limits, Continuity and Differentiability

79943 If \(f(x)=(1+x)^{2 / x}\) for \(x \neq 0\) and \(f(0)=e^{2}\) is

1 left continuous only at \(x=0\)
2 right continuous only at \(x=0\)
3 continuous at \(x=0\)
4 discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.

1 \(\frac{2}{3}, \frac{3}{2}\)
2 \(\frac{2}{3}, \mathrm{e}^{2 / 3}\)
3 \(\frac{3}{2}, \mathrm{e}^{3 / 2}\)
4 None of these
Limits, Continuity and Differentiability

79945 If \(f(x)=\left\{\begin{array}{ll}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.\) is continuous at \(x=\frac{\pi}{2}\), then

1 \(\mathrm{m}=1, \mathrm{n}=0\)
2 \(\mathrm{m}=\frac{\mathrm{n} \pi}{2}+1\)
3 \(\mathrm{n}=\mathrm{m} \frac{\pi}{2}\)
4 \(\mathrm{m}=\mathrm{n}=\frac{\pi}{2}\)
Limits, Continuity and Differentiability

79942 The set of points of discontinuity of the function
\(f(x)=\lim _{n \rightarrow \infty} \frac{(2 \sin x)^{2 n}}{3^{n}-(2 \cos x)^{2 n}}\) is given by

1 \(\mathrm{R}\)
2 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathrm{I}\right\}\)
3 \(\left\{\mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathrm{I}\right\}\)
4 None of these
Limits, Continuity and Differentiability

79943 If \(f(x)=(1+x)^{2 / x}\) for \(x \neq 0\) and \(f(0)=e^{2}\) is

1 left continuous only at \(x=0\)
2 right continuous only at \(x=0\)
3 continuous at \(x=0\)
4 discontinuous at \(\mathrm{x}=0\)
Limits, Continuity and Differentiability

79944 If \(f(x)=\left\{\begin{array}{cc}(1+|\sin x|)^{a /|\sin x|} ,-\frac{\pi}{6}\lt x\lt 0 \\ b , x=0 \\ e^{\tan 2 x \tan 3 x} , 0\lt x\lt -\frac{\pi}{6}\end{array}\right.\),then the value of \(a\) and \(b\), if \(f\) is continuous at \(x=0\), are respectively.

1 \(\frac{2}{3}, \frac{3}{2}\)
2 \(\frac{2}{3}, \mathrm{e}^{2 / 3}\)
3 \(\frac{3}{2}, \mathrm{e}^{3 / 2}\)
4 None of these
Limits, Continuity and Differentiability

79945 If \(f(x)=\left\{\begin{array}{ll}m x+1, x \leq \frac{\pi}{2} \\ \sin x+n, x>\frac{\pi}{2}\end{array}\right.\) is continuous at \(x=\frac{\pi}{2}\), then

1 \(\mathrm{m}=1, \mathrm{n}=0\)
2 \(\mathrm{m}=\frac{\mathrm{n} \pi}{2}+1\)
3 \(\mathrm{n}=\mathrm{m} \frac{\pi}{2}\)
4 \(\mathrm{m}=\mathrm{n}=\frac{\pi}{2}\)