79484 The value of limx→05x−5−x2x=
(A) : Given,limx→05x−5−x2xFrom L- Hospital's's rule-=limx→05x−5−x2x=limx→05xlog5−5−xlog5×(−1)2=limx→05xlog5+5−xlog52=log5+log52=log5
79486 limx→11+logx−x1−2x+x2=
(D) : Given, limx→11+logx−x1−2x+x2Applying L'-Hospital's rule,limx→11+logx−x1−2x+x2=limx→11x−1−2+2xlimx→1(1−x)2x(x−1)=limx→1−(x−1)2x(x−1)limx→1(−12x)=−12
79487 If limx→∞[x3+1x2+1−(ax+b)]=2, then :
(C) : Given, limx→∞[x3+1x2+1−(ax+b)]=2limx→∞[x3+1−ax3−bx2−ax−bx2+1]=2limx→∞[x3(1−a)−bx2−ax−b+1x2+1]=2For the infinite limit exist, the coefficient of x3 must be zero.∴1−a=0a=1limx→∞[−bx2−x−b+1x2+1]=2limx→∞[−b(x2+1)−x+1x2+1]=2limx→∞[−b(x2+1)x2+1−xx2+1+1x2+1]=2limx→∞[−b−xx2+1+1x2+1]=2−b−0+0=2b=−2
79488 If f(x)=|sinxcosxtanxx3x2x2x11|, then limx→0f(x)x2 is :
(C) : Given, f(x)=|sinxcosxtanxx3x2x2x11|f(x)=sinx(x2−x)−cosx⋅(x3−2x2)+tanx(x3−2x3)f(x)=x(x−1)sinx−x2(x−2)cosx−x3tanxf(x)x2=(x−1)sinxx−(x−2)cosx−xtanx=sinx−sinxx−(x−2)cosx−xtanxlimx→0f(x)x2=limx→0[sinx−sinxx−(x−2)cosx−xtanx]=sin0−1−(0−2)cos0∘−0=0−1+2limx→0f(x)x2=1