Limits of Standard Functions
Limits, Continuity and Differentiability

79484 The value of \(\lim _{x \rightarrow 0} \frac{5^{x}-5^{-x}}{2 x}=\)

1 \(\log 5\)
2 0
3 1
4 \(2 \log 5\)
Limits, Continuity and Differentiability

79486 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}=\)

1 1
2 -1
3 zero
4 \(-1 / 2\)
Limits, Continuity and Differentiability

79487 If \(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right]=2\), then :

1 \(\mathrm{a}=1\) and \(\mathrm{b}=1\)
2 \(\mathrm{a}=1\) and \(\mathrm{b}=-1\)
3 \(a=1\) and \(b=-2\)
4 \(\mathrm{a}=1\) and \(\mathrm{b}=2\)
Limits, Continuity and Differentiability

79488 If \(f(x)=\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
x^3 & x^2 & x \\
2 x & 1 & 1
\end{array}\right|\), then \(\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}\) is :

1 -1
2 3
3 1
4 zero
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79484 The value of \(\lim _{x \rightarrow 0} \frac{5^{x}-5^{-x}}{2 x}=\)

1 \(\log 5\)
2 0
3 1
4 \(2 \log 5\)
Limits, Continuity and Differentiability

79486 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}=\)

1 1
2 -1
3 zero
4 \(-1 / 2\)
Limits, Continuity and Differentiability

79487 If \(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right]=2\), then :

1 \(\mathrm{a}=1\) and \(\mathrm{b}=1\)
2 \(\mathrm{a}=1\) and \(\mathrm{b}=-1\)
3 \(a=1\) and \(b=-2\)
4 \(\mathrm{a}=1\) and \(\mathrm{b}=2\)
Limits, Continuity and Differentiability

79488 If \(f(x)=\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
x^3 & x^2 & x \\
2 x & 1 & 1
\end{array}\right|\), then \(\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}\) is :

1 -1
2 3
3 1
4 zero
Limits, Continuity and Differentiability

79484 The value of \(\lim _{x \rightarrow 0} \frac{5^{x}-5^{-x}}{2 x}=\)

1 \(\log 5\)
2 0
3 1
4 \(2 \log 5\)
Limits, Continuity and Differentiability

79486 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}=\)

1 1
2 -1
3 zero
4 \(-1 / 2\)
Limits, Continuity and Differentiability

79487 If \(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right]=2\), then :

1 \(\mathrm{a}=1\) and \(\mathrm{b}=1\)
2 \(\mathrm{a}=1\) and \(\mathrm{b}=-1\)
3 \(a=1\) and \(b=-2\)
4 \(\mathrm{a}=1\) and \(\mathrm{b}=2\)
Limits, Continuity and Differentiability

79488 If \(f(x)=\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
x^3 & x^2 & x \\
2 x & 1 & 1
\end{array}\right|\), then \(\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}\) is :

1 -1
2 3
3 1
4 zero
Limits, Continuity and Differentiability

79484 The value of \(\lim _{x \rightarrow 0} \frac{5^{x}-5^{-x}}{2 x}=\)

1 \(\log 5\)
2 0
3 1
4 \(2 \log 5\)
Limits, Continuity and Differentiability

79486 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}=\)

1 1
2 -1
3 zero
4 \(-1 / 2\)
Limits, Continuity and Differentiability

79487 If \(\lim _{x \rightarrow \infty}\left[\frac{x^{3}+1}{x^{2}+1}-(a x+b)\right]=2\), then :

1 \(\mathrm{a}=1\) and \(\mathrm{b}=1\)
2 \(\mathrm{a}=1\) and \(\mathrm{b}=-1\)
3 \(a=1\) and \(b=-2\)
4 \(\mathrm{a}=1\) and \(\mathrm{b}=2\)
Limits, Continuity and Differentiability

79488 If \(f(x)=\left|\begin{array}{ccc}
\sin x & \cos x & \tan x \\
x^3 & x^2 & x \\
2 x & 1 & 1
\end{array}\right|\), then \(\lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}\) is :

1 -1
2 3
3 1
4 zero