Limits of Standard Functions
Limits, Continuity and Differentiability

79541 The value of \(\lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin x \cos x}\) is

1 \(\frac{2}{5}\)
2 \(\frac{3}{5}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Limits, Continuity and Differentiability

79542 \(\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1}\) is equal to

1 \(\log 2\)
2 \(\log 4\)
3 \(\log \sqrt{2}\)
4 None of these
Limits, Continuity and Differentiability

79543 The value of \(\lim _{x \rightarrow 0}(\cos x+a \operatorname{sinbx})^{1 / x}\) is

1 1
2 \(\mathrm{ab}\)
3 \(\mathrm{e}^{\mathrm{ab}}\)
4 \(\mathrm{e}^{\mathrm{b} / \mathrm{a}}\)
Limits, Continuity and Differentiability

79544 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}\) is equal to

1 1
2 -1
3 0
4 \(-\frac{1}{2}\)
Limits, Continuity and Differentiability

79541 The value of \(\lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin x \cos x}\) is

1 \(\frac{2}{5}\)
2 \(\frac{3}{5}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Limits, Continuity and Differentiability

79542 \(\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1}\) is equal to

1 \(\log 2\)
2 \(\log 4\)
3 \(\log \sqrt{2}\)
4 None of these
Limits, Continuity and Differentiability

79543 The value of \(\lim _{x \rightarrow 0}(\cos x+a \operatorname{sinbx})^{1 / x}\) is

1 1
2 \(\mathrm{ab}\)
3 \(\mathrm{e}^{\mathrm{ab}}\)
4 \(\mathrm{e}^{\mathrm{b} / \mathrm{a}}\)
Limits, Continuity and Differentiability

79544 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}\) is equal to

1 1
2 -1
3 0
4 \(-\frac{1}{2}\)
Limits, Continuity and Differentiability

79541 The value of \(\lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin x \cos x}\) is

1 \(\frac{2}{5}\)
2 \(\frac{3}{5}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Limits, Continuity and Differentiability

79542 \(\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1}\) is equal to

1 \(\log 2\)
2 \(\log 4\)
3 \(\log \sqrt{2}\)
4 None of these
Limits, Continuity and Differentiability

79543 The value of \(\lim _{x \rightarrow 0}(\cos x+a \operatorname{sinbx})^{1 / x}\) is

1 1
2 \(\mathrm{ab}\)
3 \(\mathrm{e}^{\mathrm{ab}}\)
4 \(\mathrm{e}^{\mathrm{b} / \mathrm{a}}\)
Limits, Continuity and Differentiability

79544 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}\) is equal to

1 1
2 -1
3 0
4 \(-\frac{1}{2}\)
Limits, Continuity and Differentiability

79541 The value of \(\lim _{x \rightarrow 0} \frac{1-\cos ^{3} x}{x \sin x \cos x}\) is

1 \(\frac{2}{5}\)
2 \(\frac{3}{5}\)
3 \(\frac{3}{2}\)
4 \(\frac{3}{4}\)
Limits, Continuity and Differentiability

79542 \(\lim _{x \rightarrow 0} \frac{2^{x}-1}{(1+x)^{1 / 2}-1}\) is equal to

1 \(\log 2\)
2 \(\log 4\)
3 \(\log \sqrt{2}\)
4 None of these
Limits, Continuity and Differentiability

79543 The value of \(\lim _{x \rightarrow 0}(\cos x+a \operatorname{sinbx})^{1 / x}\) is

1 1
2 \(\mathrm{ab}\)
3 \(\mathrm{e}^{\mathrm{ab}}\)
4 \(\mathrm{e}^{\mathrm{b} / \mathrm{a}}\)
Limits, Continuity and Differentiability

79544 \(\lim _{x \rightarrow 1} \frac{1+\log x-x}{1-2 x+x^{2}}\) is equal to

1 1
2 -1
3 0
4 \(-\frac{1}{2}\)