Limits of Standard Functions
Limits, Continuity and Differentiability

79532 The value of \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x) \cos x}{\sin x-\operatorname{cosec} x}\) is

1 \(\infty\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

79533 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79534 \(\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}\) is equal to

1 \(\frac{1}{\mathrm{e}}\)
2 1
3 e
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79535 If \(f\) be a function such that \(f(9)=9\) and \(f^{\prime}(9)=3\),
then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to

1 9
2 3
3 1
4 None of these
Limits, Continuity and Differentiability

79539 The \(\lim _{y \rightarrow a}\left\{\left(\sin \frac{y-a}{2}\right) \cdot\left(\tan \frac{\pi y}{2 a}\right)\right\}\) is

1 \(\frac{2 a}{\pi}\)
2 \(\frac{\mathrm{a}}{\pi}\)
3 \(-\frac{\mathrm{a}}{\pi}\)
4 \(\frac{\mathrm{a}}{2 \pi}\)
Limits, Continuity and Differentiability

79532 The value of \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x) \cos x}{\sin x-\operatorname{cosec} x}\) is

1 \(\infty\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

79533 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79534 \(\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}\) is equal to

1 \(\frac{1}{\mathrm{e}}\)
2 1
3 e
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79535 If \(f\) be a function such that \(f(9)=9\) and \(f^{\prime}(9)=3\),
then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to

1 9
2 3
3 1
4 None of these
Limits, Continuity and Differentiability

79539 The \(\lim _{y \rightarrow a}\left\{\left(\sin \frac{y-a}{2}\right) \cdot\left(\tan \frac{\pi y}{2 a}\right)\right\}\) is

1 \(\frac{2 a}{\pi}\)
2 \(\frac{\mathrm{a}}{\pi}\)
3 \(-\frac{\mathrm{a}}{\pi}\)
4 \(\frac{\mathrm{a}}{2 \pi}\)
Limits, Continuity and Differentiability

79532 The value of \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x) \cos x}{\sin x-\operatorname{cosec} x}\) is

1 \(\infty\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

79533 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79534 \(\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}\) is equal to

1 \(\frac{1}{\mathrm{e}}\)
2 1
3 e
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79535 If \(f\) be a function such that \(f(9)=9\) and \(f^{\prime}(9)=3\),
then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to

1 9
2 3
3 1
4 None of these
Limits, Continuity and Differentiability

79539 The \(\lim _{y \rightarrow a}\left\{\left(\sin \frac{y-a}{2}\right) \cdot\left(\tan \frac{\pi y}{2 a}\right)\right\}\) is

1 \(\frac{2 a}{\pi}\)
2 \(\frac{\mathrm{a}}{\pi}\)
3 \(-\frac{\mathrm{a}}{\pi}\)
4 \(\frac{\mathrm{a}}{2 \pi}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79532 The value of \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x) \cos x}{\sin x-\operatorname{cosec} x}\) is

1 \(\infty\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

79533 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79534 \(\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}\) is equal to

1 \(\frac{1}{\mathrm{e}}\)
2 1
3 e
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79535 If \(f\) be a function such that \(f(9)=9\) and \(f^{\prime}(9)=3\),
then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to

1 9
2 3
3 1
4 None of these
Limits, Continuity and Differentiability

79539 The \(\lim _{y \rightarrow a}\left\{\left(\sin \frac{y-a}{2}\right) \cdot\left(\tan \frac{\pi y}{2 a}\right)\right\}\) is

1 \(\frac{2 a}{\pi}\)
2 \(\frac{\mathrm{a}}{\pi}\)
3 \(-\frac{\mathrm{a}}{\pi}\)
4 \(\frac{\mathrm{a}}{2 \pi}\)
Limits, Continuity and Differentiability

79532 The value of \(\lim _{x \rightarrow \frac{\pi}{2}} \frac{\sin (\cos x) \cos x}{\sin x-\operatorname{cosec} x}\) is

1 \(\infty\)
2 1
3 0
4 -1
Limits, Continuity and Differentiability

79533 \(\lim _{x \rightarrow 0}(\operatorname{cosec} x)^{1 / \log x}\) is equal to

1 0
2 1
3 \(\frac{1}{\mathrm{e}}\)
4 None of these
Limits, Continuity and Differentiability

79534 \(\lim _{x \rightarrow 0}\left\{\frac{1+\tan x}{1+\sin x}\right\}^{\operatorname{cosec} x}\) is equal to

1 \(\frac{1}{\mathrm{e}}\)
2 1
3 e
4 \(\mathrm{e}^{2}\)
Limits, Continuity and Differentiability

79535 If \(f\) be a function such that \(f(9)=9\) and \(f^{\prime}(9)=3\),
then \(\lim _{x \rightarrow 9} \frac{\sqrt{f(x)}-3}{\sqrt{x}-3}\) is equal to

1 9
2 3
3 1
4 None of these
Limits, Continuity and Differentiability

79539 The \(\lim _{y \rightarrow a}\left\{\left(\sin \frac{y-a}{2}\right) \cdot\left(\tan \frac{\pi y}{2 a}\right)\right\}\) is

1 \(\frac{2 a}{\pi}\)
2 \(\frac{\mathrm{a}}{\pi}\)
3 \(-\frac{\mathrm{a}}{\pi}\)
4 \(\frac{\mathrm{a}}{2 \pi}\)