Limits of Standard Functions
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79545 \(\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}\) is equal to

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79550 \(\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}\) is equal to:

1 \(\lambda\)
2 -1
3 zero
4 does not exist
Limits, Continuity and Differentiability

79551 \(\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\log (\mathrm{x}-\mathrm{a})}{\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{a}}\right)}\) is equal to :

1 0
2 1
3 a
4 does not exist
Limits, Continuity and Differentiability

79552 The value of \(\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi}{2} x\right)\) :

1 \(3 \pi / 4\)
2 \(2 \pi / 3\)
3 \(2 / \pi\)
4 \(\pi / 4\)
Limits, Continuity and Differentiability

79545 \(\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}\) is equal to

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79550 \(\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}\) is equal to:

1 \(\lambda\)
2 -1
3 zero
4 does not exist
Limits, Continuity and Differentiability

79551 \(\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\log (\mathrm{x}-\mathrm{a})}{\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{a}}\right)}\) is equal to :

1 0
2 1
3 a
4 does not exist
Limits, Continuity and Differentiability

79552 The value of \(\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi}{2} x\right)\) :

1 \(3 \pi / 4\)
2 \(2 \pi / 3\)
3 \(2 / \pi\)
4 \(\pi / 4\)
Limits, Continuity and Differentiability

79545 \(\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}\) is equal to

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79550 \(\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}\) is equal to:

1 \(\lambda\)
2 -1
3 zero
4 does not exist
Limits, Continuity and Differentiability

79551 \(\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\log (\mathrm{x}-\mathrm{a})}{\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{a}}\right)}\) is equal to :

1 0
2 1
3 a
4 does not exist
Limits, Continuity and Differentiability

79552 The value of \(\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi}{2} x\right)\) :

1 \(3 \pi / 4\)
2 \(2 \pi / 3\)
3 \(2 / \pi\)
4 \(\pi / 4\)
Limits, Continuity and Differentiability

79545 \(\lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}\) is equal to

1 -1
2 1
3 2
4 -2
Limits, Continuity and Differentiability

79550 \(\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{\sqrt{2} x}\) is equal to:

1 \(\lambda\)
2 -1
3 zero
4 does not exist
Limits, Continuity and Differentiability

79551 \(\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{\log (\mathrm{x}-\mathrm{a})}{\log \left(\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{\mathrm{a}}\right)}\) is equal to :

1 0
2 1
3 a
4 does not exist
Limits, Continuity and Differentiability

79552 The value of \(\lim _{x \rightarrow 1}(1-x) \tan \left(\frac{\pi}{2} x\right)\) :

1 \(3 \pi / 4\)
2 \(2 \pi / 3\)
3 \(2 / \pi\)
4 \(\pi / 4\)