Limits of Standard Functions
Limits, Continuity and Differentiability

79577 \(\lim _{x \rightarrow \infty}\left[\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right]^{\frac{4 x+3}{8 x-1}}=\)

1 2
2 \(\sqrt{2}\)
3 4
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

79578 \(\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+9}-n\right)=\)

1 \(\frac{9}{2}\)
2 \(\frac{9}{\sqrt{2}}\)
3 9
4 \(\frac{9}{4}\)
Limits, Continuity and Differentiability

79579 \(\lim _{\mathrm{x} \rightarrow 3} \frac{5^{\mathrm{x}-3}-4^{\mathrm{x}-3}}{\sin (\mathrm{x}-3)}=\)

1 \(\log \left(\frac{5}{4}\right)\)
2 \(\frac{\log 5}{\log 4}\)
3 \(\frac{\log 5}{4}\)
4 \(\log 5-4\)
Limits, Continuity and Differentiability

79580 If \(\lim _{x \rightarrow 5} \frac{x^{k}-5^{k}}{x-5}=500\), then the value of \(k\), where \(\mathbf{k} \in \mathbf{N}\) is

1 6
2 5
3 4
4 3
Limits, Continuity and Differentiability

79581 \(\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}=\)

1 \(\frac{1}{10}\)
2 \(\frac{-1}{5}\)
3 \(\frac{1}{5}\)
4 \(\frac{-1}{10}\)
Limits, Continuity and Differentiability

79577 \(\lim _{x \rightarrow \infty}\left[\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right]^{\frac{4 x+3}{8 x-1}}=\)

1 2
2 \(\sqrt{2}\)
3 4
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

79578 \(\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+9}-n\right)=\)

1 \(\frac{9}{2}\)
2 \(\frac{9}{\sqrt{2}}\)
3 9
4 \(\frac{9}{4}\)
Limits, Continuity and Differentiability

79579 \(\lim _{\mathrm{x} \rightarrow 3} \frac{5^{\mathrm{x}-3}-4^{\mathrm{x}-3}}{\sin (\mathrm{x}-3)}=\)

1 \(\log \left(\frac{5}{4}\right)\)
2 \(\frac{\log 5}{\log 4}\)
3 \(\frac{\log 5}{4}\)
4 \(\log 5-4\)
Limits, Continuity and Differentiability

79580 If \(\lim _{x \rightarrow 5} \frac{x^{k}-5^{k}}{x-5}=500\), then the value of \(k\), where \(\mathbf{k} \in \mathbf{N}\) is

1 6
2 5
3 4
4 3
Limits, Continuity and Differentiability

79581 \(\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}=\)

1 \(\frac{1}{10}\)
2 \(\frac{-1}{5}\)
3 \(\frac{1}{5}\)
4 \(\frac{-1}{10}\)
Limits, Continuity and Differentiability

79577 \(\lim _{x \rightarrow \infty}\left[\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right]^{\frac{4 x+3}{8 x-1}}=\)

1 2
2 \(\sqrt{2}\)
3 4
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

79578 \(\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+9}-n\right)=\)

1 \(\frac{9}{2}\)
2 \(\frac{9}{\sqrt{2}}\)
3 9
4 \(\frac{9}{4}\)
Limits, Continuity and Differentiability

79579 \(\lim _{\mathrm{x} \rightarrow 3} \frac{5^{\mathrm{x}-3}-4^{\mathrm{x}-3}}{\sin (\mathrm{x}-3)}=\)

1 \(\log \left(\frac{5}{4}\right)\)
2 \(\frac{\log 5}{\log 4}\)
3 \(\frac{\log 5}{4}\)
4 \(\log 5-4\)
Limits, Continuity and Differentiability

79580 If \(\lim _{x \rightarrow 5} \frac{x^{k}-5^{k}}{x-5}=500\), then the value of \(k\), where \(\mathbf{k} \in \mathbf{N}\) is

1 6
2 5
3 4
4 3
Limits, Continuity and Differentiability

79581 \(\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}=\)

1 \(\frac{1}{10}\)
2 \(\frac{-1}{5}\)
3 \(\frac{1}{5}\)
4 \(\frac{-1}{10}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Limits, Continuity and Differentiability

79577 \(\lim _{x \rightarrow \infty}\left[\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right]^{\frac{4 x+3}{8 x-1}}=\)

1 2
2 \(\sqrt{2}\)
3 4
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

79578 \(\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+9}-n\right)=\)

1 \(\frac{9}{2}\)
2 \(\frac{9}{\sqrt{2}}\)
3 9
4 \(\frac{9}{4}\)
Limits, Continuity and Differentiability

79579 \(\lim _{\mathrm{x} \rightarrow 3} \frac{5^{\mathrm{x}-3}-4^{\mathrm{x}-3}}{\sin (\mathrm{x}-3)}=\)

1 \(\log \left(\frac{5}{4}\right)\)
2 \(\frac{\log 5}{\log 4}\)
3 \(\frac{\log 5}{4}\)
4 \(\log 5-4\)
Limits, Continuity and Differentiability

79580 If \(\lim _{x \rightarrow 5} \frac{x^{k}-5^{k}}{x-5}=500\), then the value of \(k\), where \(\mathbf{k} \in \mathbf{N}\) is

1 6
2 5
3 4
4 3
Limits, Continuity and Differentiability

79581 \(\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}=\)

1 \(\frac{1}{10}\)
2 \(\frac{-1}{5}\)
3 \(\frac{1}{5}\)
4 \(\frac{-1}{10}\)
Limits, Continuity and Differentiability

79577 \(\lim _{x \rightarrow \infty}\left[\frac{8 x^{2}+5 x+3}{2 x^{2}-7 x-5}\right]^{\frac{4 x+3}{8 x-1}}=\)

1 2
2 \(\sqrt{2}\)
3 4
4 \(\frac{1}{2}\)
Limits, Continuity and Differentiability

79578 \(\lim _{n \rightarrow \infty} n\left(\sqrt{n^{2}+9}-n\right)=\)

1 \(\frac{9}{2}\)
2 \(\frac{9}{\sqrt{2}}\)
3 9
4 \(\frac{9}{4}\)
Limits, Continuity and Differentiability

79579 \(\lim _{\mathrm{x} \rightarrow 3} \frac{5^{\mathrm{x}-3}-4^{\mathrm{x}-3}}{\sin (\mathrm{x}-3)}=\)

1 \(\log \left(\frac{5}{4}\right)\)
2 \(\frac{\log 5}{\log 4}\)
3 \(\frac{\log 5}{4}\)
4 \(\log 5-4\)
Limits, Continuity and Differentiability

79580 If \(\lim _{x \rightarrow 5} \frac{x^{k}-5^{k}}{x-5}=500\), then the value of \(k\), where \(\mathbf{k} \in \mathbf{N}\) is

1 6
2 5
3 4
4 3
Limits, Continuity and Differentiability

79581 \(\lim _{x \rightarrow 1} \frac{(2 x-3)(\sqrt{x}-1)}{2 x^{2}+x-3}=\)

1 \(\frac{1}{10}\)
2 \(\frac{-1}{5}\)
3 \(\frac{1}{5}\)
4 \(\frac{-1}{10}\)