Limits of Standard Functions
Limits, Continuity and Differentiability

79582 If \(a=\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots . .+n}{n^{2}}\) and
\(b=\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}}{n^{3}}, \text { then }\)

1 \(3 a=2 b\)
2 \(2 a a^{n \rightarrow \infty}=3 b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=2 b\)
Limits, Continuity and Differentiability

79583 \(\lim _{t \rightarrow 0} \frac{\sin 2 t}{8 t^{2}+4 t}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{2}{5}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
5 \(1\)
Limits, Continuity and Differentiability

79584 \(\lim _{x \rightarrow 0} \frac{x}{\sqrt{9-x}-3}\) is equal to

1 6
2 3
3 -3
4 -6
5 0
Limits, Continuity and Differentiability

79585 Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively

1 \(-4,3\) (b) 6,3
2 (c.) \(-6,3\)
3 \(-4,9\)
4 \(9,-4\)
Limits, Continuity and Differentiability

79582 If \(a=\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots . .+n}{n^{2}}\) and
\(b=\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}}{n^{3}}, \text { then }\)

1 \(3 a=2 b\)
2 \(2 a a^{n \rightarrow \infty}=3 b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=2 b\)
Limits, Continuity and Differentiability

79583 \(\lim _{t \rightarrow 0} \frac{\sin 2 t}{8 t^{2}+4 t}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{2}{5}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
5 \(1\)
Limits, Continuity and Differentiability

79584 \(\lim _{x \rightarrow 0} \frac{x}{\sqrt{9-x}-3}\) is equal to

1 6
2 3
3 -3
4 -6
5 0
Limits, Continuity and Differentiability

79585 Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively

1 \(-4,3\) (b) 6,3
2 (c.) \(-6,3\)
3 \(-4,9\)
4 \(9,-4\)
Limits, Continuity and Differentiability

79582 If \(a=\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots . .+n}{n^{2}}\) and
\(b=\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}}{n^{3}}, \text { then }\)

1 \(3 a=2 b\)
2 \(2 a a^{n \rightarrow \infty}=3 b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=2 b\)
Limits, Continuity and Differentiability

79583 \(\lim _{t \rightarrow 0} \frac{\sin 2 t}{8 t^{2}+4 t}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{2}{5}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
5 \(1\)
Limits, Continuity and Differentiability

79584 \(\lim _{x \rightarrow 0} \frac{x}{\sqrt{9-x}-3}\) is equal to

1 6
2 3
3 -3
4 -6
5 0
Limits, Continuity and Differentiability

79585 Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively

1 \(-4,3\) (b) 6,3
2 (c.) \(-6,3\)
3 \(-4,9\)
4 \(9,-4\)
Limits, Continuity and Differentiability

79582 If \(a=\lim _{n \rightarrow \infty} \frac{1+2+3+\ldots . .+n}{n^{2}}\) and
\(b=\lim _{n \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots . .+n^{2}}{n^{3}}, \text { then }\)

1 \(3 a=2 b\)
2 \(2 a a^{n \rightarrow \infty}=3 b\)
3 \(\mathrm{a}=\mathrm{b}\)
4 \(a=2 b\)
Limits, Continuity and Differentiability

79583 \(\lim _{t \rightarrow 0} \frac{\sin 2 t}{8 t^{2}+4 t}\) is equal to

1 \(\frac{1}{2}\)
2 \(\frac{2}{5}\)
3 \(\frac{1}{6}\)
4 \(\frac{1}{3}\)
5 \(1\)
Limits, Continuity and Differentiability

79584 \(\lim _{x \rightarrow 0} \frac{x}{\sqrt{9-x}-3}\) is equal to

1 6
2 3
3 -3
4 -6
5 0
Limits, Continuity and Differentiability

79585 Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively

1 \(-4,3\) (b) 6,3
2 (c.) \(-6,3\)
3 \(-4,9\)
4 \(9,-4\)