79585
Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively
79585
Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively
79585
Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively
79585
Let \(f(x)=\left\{\begin{array}{l}3 x+2, \quad \text { if } x\lt -2 \\ x^{2}-3 x-1, \text { if } x \geq-2\end{array}\right.\). Then \(\lim _{x \rightarrow-2^{-}} f(x)\) and \(\lim _{x \rightarrow-2^{+}} f(x)\) are respectively