79575 Letf \((x)=5-|x-2|\) and \(g(x)=|x+1|, x \in R\). If \(f(x)\) attains maximum value at \(\alpha\) and \(g(x)\) attains minimum value at \(\beta\) them \(\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{\left(x^{2}-6 x+8\right)}\) is equal to
79575 Letf \((x)=5-|x-2|\) and \(g(x)=|x+1|, x \in R\). If \(f(x)\) attains maximum value at \(\alpha\) and \(g(x)\) attains minimum value at \(\beta\) them \(\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{\left(x^{2}-6 x+8\right)}\) is equal to
79575 Letf \((x)=5-|x-2|\) and \(g(x)=|x+1|, x \in R\). If \(f(x)\) attains maximum value at \(\alpha\) and \(g(x)\) attains minimum value at \(\beta\) them \(\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{\left(x^{2}-6 x+8\right)}\) is equal to
79575 Letf \((x)=5-|x-2|\) and \(g(x)=|x+1|, x \in R\). If \(f(x)\) attains maximum value at \(\alpha\) and \(g(x)\) attains minimum value at \(\beta\) them \(\lim _{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^{2}-5 x+6\right)}{\left(x^{2}-6 x+8\right)}\) is equal to