Concept of Elementary Row and Column Operation
Matrix and Determinant

79466 If the matrix \(A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]\) is of rank 3 , then \(\alpha\) equals to

1 -5
2 5
3 4
4 1
Matrix and Determinant

79467 The equation whose roots are the values of the
equation \(\left|\begin{array}{ccc}1 & -3 & 1 \\ 1 & 6 & 4 \\ 1 & 3 x & x^{2}\end{array}\right|=0\) is

1 \(x^{2}+x+2=0\)
2 \(x^{2}+x-2=0\)
3 \(x^{2}+2 x+2=0\)
4 \(x^{2}-x-2=0\)
Matrix and Determinant

79468 If \(a_{1}, a_{2}, \ldots a_{9}\) are in G.P.
then \(\left|\begin{array}{lll}\log a_{1} & \log a_{2} & \log a_{3} \\ \log a_{4} & \log a_{5} & \log a_{6} \\ \log a_{7} & \log a_{8} & \log a_{9}\end{array}\right|\) is equal to

1 \(\log \left(a_{1}, a_{2}, \ldots a_{n}\right)\)
2 1
3 \(\left(\log \mathrm{a}_{9}\right)^{9}\)
4 0
Matrix and Determinant

79469 If the following three linear equations have a non-trivial solution, then
\(x+4 a y+a x=0\)
\(x+3 b y+b z=0\)
\(x+2 c y+c z=0\)

1 a,b,c are in AP
2 a,b,c are in GP
3 a,b,c are in HP
4 \(a+b+c=0\)
Matrix and Determinant

79470 \(\left|\begin{array}{ccc}x & 3 x+2 & 2 x-1 \\ 2 x-1 & 4 x & 3 x+1 \\ 7 x-2 & 17 x+6 & 12 x-1\end{array}\right|=0\) is true for

1 Only one value of \(x\)
2 Only two values of \(x\)
3 Only three values of \(x\)
4 Infinitely many values of \(x\)
Matrix and Determinant

79466 If the matrix \(A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]\) is of rank 3 , then \(\alpha\) equals to

1 -5
2 5
3 4
4 1
Matrix and Determinant

79467 The equation whose roots are the values of the
equation \(\left|\begin{array}{ccc}1 & -3 & 1 \\ 1 & 6 & 4 \\ 1 & 3 x & x^{2}\end{array}\right|=0\) is

1 \(x^{2}+x+2=0\)
2 \(x^{2}+x-2=0\)
3 \(x^{2}+2 x+2=0\)
4 \(x^{2}-x-2=0\)
Matrix and Determinant

79468 If \(a_{1}, a_{2}, \ldots a_{9}\) are in G.P.
then \(\left|\begin{array}{lll}\log a_{1} & \log a_{2} & \log a_{3} \\ \log a_{4} & \log a_{5} & \log a_{6} \\ \log a_{7} & \log a_{8} & \log a_{9}\end{array}\right|\) is equal to

1 \(\log \left(a_{1}, a_{2}, \ldots a_{n}\right)\)
2 1
3 \(\left(\log \mathrm{a}_{9}\right)^{9}\)
4 0
Matrix and Determinant

79469 If the following three linear equations have a non-trivial solution, then
\(x+4 a y+a x=0\)
\(x+3 b y+b z=0\)
\(x+2 c y+c z=0\)

1 a,b,c are in AP
2 a,b,c are in GP
3 a,b,c are in HP
4 \(a+b+c=0\)
Matrix and Determinant

79470 \(\left|\begin{array}{ccc}x & 3 x+2 & 2 x-1 \\ 2 x-1 & 4 x & 3 x+1 \\ 7 x-2 & 17 x+6 & 12 x-1\end{array}\right|=0\) is true for

1 Only one value of \(x\)
2 Only two values of \(x\)
3 Only three values of \(x\)
4 Infinitely many values of \(x\)
Matrix and Determinant

79466 If the matrix \(A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]\) is of rank 3 , then \(\alpha\) equals to

1 -5
2 5
3 4
4 1
Matrix and Determinant

79467 The equation whose roots are the values of the
equation \(\left|\begin{array}{ccc}1 & -3 & 1 \\ 1 & 6 & 4 \\ 1 & 3 x & x^{2}\end{array}\right|=0\) is

1 \(x^{2}+x+2=0\)
2 \(x^{2}+x-2=0\)
3 \(x^{2}+2 x+2=0\)
4 \(x^{2}-x-2=0\)
Matrix and Determinant

79468 If \(a_{1}, a_{2}, \ldots a_{9}\) are in G.P.
then \(\left|\begin{array}{lll}\log a_{1} & \log a_{2} & \log a_{3} \\ \log a_{4} & \log a_{5} & \log a_{6} \\ \log a_{7} & \log a_{8} & \log a_{9}\end{array}\right|\) is equal to

1 \(\log \left(a_{1}, a_{2}, \ldots a_{n}\right)\)
2 1
3 \(\left(\log \mathrm{a}_{9}\right)^{9}\)
4 0
Matrix and Determinant

79469 If the following three linear equations have a non-trivial solution, then
\(x+4 a y+a x=0\)
\(x+3 b y+b z=0\)
\(x+2 c y+c z=0\)

1 a,b,c are in AP
2 a,b,c are in GP
3 a,b,c are in HP
4 \(a+b+c=0\)
Matrix and Determinant

79470 \(\left|\begin{array}{ccc}x & 3 x+2 & 2 x-1 \\ 2 x-1 & 4 x & 3 x+1 \\ 7 x-2 & 17 x+6 & 12 x-1\end{array}\right|=0\) is true for

1 Only one value of \(x\)
2 Only two values of \(x\)
3 Only three values of \(x\)
4 Infinitely many values of \(x\)
Matrix and Determinant

79466 If the matrix \(A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]\) is of rank 3 , then \(\alpha\) equals to

1 -5
2 5
3 4
4 1
Matrix and Determinant

79467 The equation whose roots are the values of the
equation \(\left|\begin{array}{ccc}1 & -3 & 1 \\ 1 & 6 & 4 \\ 1 & 3 x & x^{2}\end{array}\right|=0\) is

1 \(x^{2}+x+2=0\)
2 \(x^{2}+x-2=0\)
3 \(x^{2}+2 x+2=0\)
4 \(x^{2}-x-2=0\)
Matrix and Determinant

79468 If \(a_{1}, a_{2}, \ldots a_{9}\) are in G.P.
then \(\left|\begin{array}{lll}\log a_{1} & \log a_{2} & \log a_{3} \\ \log a_{4} & \log a_{5} & \log a_{6} \\ \log a_{7} & \log a_{8} & \log a_{9}\end{array}\right|\) is equal to

1 \(\log \left(a_{1}, a_{2}, \ldots a_{n}\right)\)
2 1
3 \(\left(\log \mathrm{a}_{9}\right)^{9}\)
4 0
Matrix and Determinant

79469 If the following three linear equations have a non-trivial solution, then
\(x+4 a y+a x=0\)
\(x+3 b y+b z=0\)
\(x+2 c y+c z=0\)

1 a,b,c are in AP
2 a,b,c are in GP
3 a,b,c are in HP
4 \(a+b+c=0\)
Matrix and Determinant

79470 \(\left|\begin{array}{ccc}x & 3 x+2 & 2 x-1 \\ 2 x-1 & 4 x & 3 x+1 \\ 7 x-2 & 17 x+6 & 12 x-1\end{array}\right|=0\) is true for

1 Only one value of \(x\)
2 Only two values of \(x\)
3 Only three values of \(x\)
4 Infinitely many values of \(x\)
Matrix and Determinant

79466 If the matrix \(A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]\) is of rank 3 , then \(\alpha\) equals to

1 -5
2 5
3 4
4 1
Matrix and Determinant

79467 The equation whose roots are the values of the
equation \(\left|\begin{array}{ccc}1 & -3 & 1 \\ 1 & 6 & 4 \\ 1 & 3 x & x^{2}\end{array}\right|=0\) is

1 \(x^{2}+x+2=0\)
2 \(x^{2}+x-2=0\)
3 \(x^{2}+2 x+2=0\)
4 \(x^{2}-x-2=0\)
Matrix and Determinant

79468 If \(a_{1}, a_{2}, \ldots a_{9}\) are in G.P.
then \(\left|\begin{array}{lll}\log a_{1} & \log a_{2} & \log a_{3} \\ \log a_{4} & \log a_{5} & \log a_{6} \\ \log a_{7} & \log a_{8} & \log a_{9}\end{array}\right|\) is equal to

1 \(\log \left(a_{1}, a_{2}, \ldots a_{n}\right)\)
2 1
3 \(\left(\log \mathrm{a}_{9}\right)^{9}\)
4 0
Matrix and Determinant

79469 If the following three linear equations have a non-trivial solution, then
\(x+4 a y+a x=0\)
\(x+3 b y+b z=0\)
\(x+2 c y+c z=0\)

1 a,b,c are in AP
2 a,b,c are in GP
3 a,b,c are in HP
4 \(a+b+c=0\)
Matrix and Determinant

79470 \(\left|\begin{array}{ccc}x & 3 x+2 & 2 x-1 \\ 2 x-1 & 4 x & 3 x+1 \\ 7 x-2 & 17 x+6 & 12 x-1\end{array}\right|=0\) is true for

1 Only one value of \(x\)
2 Only two values of \(x\)
3 Only three values of \(x\)
4 Infinitely many values of \(x\)