Concept of Elementary Row and Column Operation
Matrix and Determinant

79462 The rank of \(\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & -1 & 1\end{array}\right]\) is........

1 1
2 2
3 3
4 4
Matrix and Determinant

79463 The value of \(\theta\) satisfying \(\begin{array}{lll}0 & \sin \theta & \cos \theta=0\end{array}\)
and lying in \([0, \pi]\) is:

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{5 \pi}{6}\)
Matrix and Determinant

79464 Solutions of the equation \(p+1 p+1 p+x=0\) are

1 \(x=1,2\)
\(\begin{array}{lll}3 & x+1 & x+2\end{array}\)
2 \(x=2,3\)
3 \(\mathrm{x}=1, \mathrm{p}, 2\)
4 \(\mathrm{x}=1,2,-\mathrm{p}\)
Matrix and Determinant

79465 The rank of \(\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79462 The rank of \(\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & -1 & 1\end{array}\right]\) is........

1 1
2 2
3 3
4 4
Matrix and Determinant

79463 The value of \(\theta\) satisfying \(\begin{array}{lll}0 & \sin \theta & \cos \theta=0\end{array}\)
and lying in \([0, \pi]\) is:

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{5 \pi}{6}\)
Matrix and Determinant

79464 Solutions of the equation \(p+1 p+1 p+x=0\) are

1 \(x=1,2\)
\(\begin{array}{lll}3 & x+1 & x+2\end{array}\)
2 \(x=2,3\)
3 \(\mathrm{x}=1, \mathrm{p}, 2\)
4 \(\mathrm{x}=1,2,-\mathrm{p}\)
Matrix and Determinant

79465 The rank of \(\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79462 The rank of \(\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & -1 & 1\end{array}\right]\) is........

1 1
2 2
3 3
4 4
Matrix and Determinant

79463 The value of \(\theta\) satisfying \(\begin{array}{lll}0 & \sin \theta & \cos \theta=0\end{array}\)
and lying in \([0, \pi]\) is:

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{5 \pi}{6}\)
Matrix and Determinant

79464 Solutions of the equation \(p+1 p+1 p+x=0\) are

1 \(x=1,2\)
\(\begin{array}{lll}3 & x+1 & x+2\end{array}\)
2 \(x=2,3\)
3 \(\mathrm{x}=1, \mathrm{p}, 2\)
4 \(\mathrm{x}=1,2,-\mathrm{p}\)
Matrix and Determinant

79465 The rank of \(\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\) is

1 0
2 1
3 2
4 3
Matrix and Determinant

79462 The rank of \(\left[\begin{array}{ccc}2 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & -1 & 1\end{array}\right]\) is........

1 1
2 2
3 3
4 4
Matrix and Determinant

79463 The value of \(\theta\) satisfying \(\begin{array}{lll}0 & \sin \theta & \cos \theta=0\end{array}\)
and lying in \([0, \pi]\) is:

1 \(\frac{\pi}{4}\)
2 \(\frac{\pi}{2}\)
3 \(\frac{3 \pi}{4}\)
4 \(\frac{5 \pi}{6}\)
Matrix and Determinant

79464 Solutions of the equation \(p+1 p+1 p+x=0\) are

1 \(x=1,2\)
\(\begin{array}{lll}3 & x+1 & x+2\end{array}\)
2 \(x=2,3\)
3 \(\mathrm{x}=1, \mathrm{p}, 2\)
4 \(\mathrm{x}=1,2,-\mathrm{p}\)
Matrix and Determinant

79465 The rank of \(\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & 1\end{array}\right]\) is

1 0
2 1
3 2
4 3