Concept of Elementary Row and Column Operation
Matrix and Determinant

79457 If \(a, b, c\) are the integers between 1 and 9 and a51, b41, c31 are three digit numbers and the value of determinant \(D=\left|\begin{array}{ccc}5 & 4 & 3 \\ \text { a51 } & \text { b41 } & \text { c31 } \\ a & b & c\end{array}\right|\) is zero, then \(a, b, c\) are

1 in G.P.
2 in A.P.
3 equal
4 none of these
Matrix and Determinant

79458 Let \(A=\left[\begin{array}{rrrr}1 & 0 & -1 & -3 \\ 0 & 1 & 1 & k-1 \\ 0 & 0 & k-1 & 1\end{array}\right]\) and \(k \in R\). Then the value of \(k\) if exists for which the rank of \(A\) is 2 , is

1 1
2 does not exist
3 \(1 / 3\)
4 \(1,1 / 3\)
Matrix and Determinant

79459 A value of \(b\) for which the rank of the matrix
\(A=\left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{array}\right] \text { is } 3 \text {, is }\)

1 -2
2 -4
3 -6
4 3
Matrix and Determinant

79461 If \(\left|\begin{array}{ccc}(x+a) & b & c \\ a & (x+b) & c \\ a & b & (x+c)\end{array}\right|=0\), then \(x=\)

1 \(0,-(a+b+c)\)
2 0
3 \(-(a+b+c)\)
4 \(a+b+c\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79457 If \(a, b, c\) are the integers between 1 and 9 and a51, b41, c31 are three digit numbers and the value of determinant \(D=\left|\begin{array}{ccc}5 & 4 & 3 \\ \text { a51 } & \text { b41 } & \text { c31 } \\ a & b & c\end{array}\right|\) is zero, then \(a, b, c\) are

1 in G.P.
2 in A.P.
3 equal
4 none of these
Matrix and Determinant

79458 Let \(A=\left[\begin{array}{rrrr}1 & 0 & -1 & -3 \\ 0 & 1 & 1 & k-1 \\ 0 & 0 & k-1 & 1\end{array}\right]\) and \(k \in R\). Then the value of \(k\) if exists for which the rank of \(A\) is 2 , is

1 1
2 does not exist
3 \(1 / 3\)
4 \(1,1 / 3\)
Matrix and Determinant

79459 A value of \(b\) for which the rank of the matrix
\(A=\left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{array}\right] \text { is } 3 \text {, is }\)

1 -2
2 -4
3 -6
4 3
Matrix and Determinant

79461 If \(\left|\begin{array}{ccc}(x+a) & b & c \\ a & (x+b) & c \\ a & b & (x+c)\end{array}\right|=0\), then \(x=\)

1 \(0,-(a+b+c)\)
2 0
3 \(-(a+b+c)\)
4 \(a+b+c\)
Matrix and Determinant

79457 If \(a, b, c\) are the integers between 1 and 9 and a51, b41, c31 are three digit numbers and the value of determinant \(D=\left|\begin{array}{ccc}5 & 4 & 3 \\ \text { a51 } & \text { b41 } & \text { c31 } \\ a & b & c\end{array}\right|\) is zero, then \(a, b, c\) are

1 in G.P.
2 in A.P.
3 equal
4 none of these
Matrix and Determinant

79458 Let \(A=\left[\begin{array}{rrrr}1 & 0 & -1 & -3 \\ 0 & 1 & 1 & k-1 \\ 0 & 0 & k-1 & 1\end{array}\right]\) and \(k \in R\). Then the value of \(k\) if exists for which the rank of \(A\) is 2 , is

1 1
2 does not exist
3 \(1 / 3\)
4 \(1,1 / 3\)
Matrix and Determinant

79459 A value of \(b\) for which the rank of the matrix
\(A=\left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{array}\right] \text { is } 3 \text {, is }\)

1 -2
2 -4
3 -6
4 3
Matrix and Determinant

79461 If \(\left|\begin{array}{ccc}(x+a) & b & c \\ a & (x+b) & c \\ a & b & (x+c)\end{array}\right|=0\), then \(x=\)

1 \(0,-(a+b+c)\)
2 0
3 \(-(a+b+c)\)
4 \(a+b+c\)
Matrix and Determinant

79457 If \(a, b, c\) are the integers between 1 and 9 and a51, b41, c31 are three digit numbers and the value of determinant \(D=\left|\begin{array}{ccc}5 & 4 & 3 \\ \text { a51 } & \text { b41 } & \text { c31 } \\ a & b & c\end{array}\right|\) is zero, then \(a, b, c\) are

1 in G.P.
2 in A.P.
3 equal
4 none of these
Matrix and Determinant

79458 Let \(A=\left[\begin{array}{rrrr}1 & 0 & -1 & -3 \\ 0 & 1 & 1 & k-1 \\ 0 & 0 & k-1 & 1\end{array}\right]\) and \(k \in R\). Then the value of \(k\) if exists for which the rank of \(A\) is 2 , is

1 1
2 does not exist
3 \(1 / 3\)
4 \(1,1 / 3\)
Matrix and Determinant

79459 A value of \(b\) for which the rank of the matrix
\(A=\left[\begin{array}{cccc} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ b & 2 & 2 & 2 \\ 9 & 9 & b & 3 \end{array}\right] \text { is } 3 \text {, is }\)

1 -2
2 -4
3 -6
4 3
Matrix and Determinant

79461 If \(\left|\begin{array}{ccc}(x+a) & b & c \\ a & (x+b) & c \\ a & b & (x+c)\end{array}\right|=0\), then \(x=\)

1 \(0,-(a+b+c)\)
2 0
3 \(-(a+b+c)\)
4 \(a+b+c\)