Concept of Elementary Row and Column Operation
Matrix and Determinant

79452 The values of a for which the system of equation \(x+y+z=0, x+a y+a z=0, x-a y+z\) \(\mathbf{0}\), possess non-zero solutions, are given by :

1 1,2
2 \(1,-1\)
3 1,0
4 none of these
Matrix and Determinant

79453 If \(n\) is an integer and if
\(\left|\begin{array}{lll}
x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right),\)
then \(n\) equals

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79454 The value of \(\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & (n+2) ! & (n+3) ! \\ (n+2) ! & (n+3) ! & (n+4) !\end{array}\right|\) is

1 \(\mathrm{n}\) ! \((\mathrm{n}+2)\) ! \((\mathrm{n}+4)\) !
2 \(2\{(\mathrm{n}+2) !\} 3\)
3 \((\mathrm{n}+1)\) ! \((\mathrm{n}+2) !(\mathrm{n}+3)\) !
4 \(2(n !)(n+1) !(n+2)\) !
Matrix and Determinant

79455 The value of \(\theta\) lying in \((0, \pi)\) and satisfying the
equation \(\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \\ \cos \theta & 0 & \sin \theta\end{array}\right|=0\) is

1 \(\pi / 4\)
2 \(3 \pi / 4\)
3 \(2 \pi / 3\)
4 \(5 \pi / 6\)
Matrix and Determinant

79456 If \(\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\), then the number of distinct real roots of this equation in the interval \(-\pi / 2

1 2
2 0
3 1
4 3
Matrix and Determinant

79452 The values of a for which the system of equation \(x+y+z=0, x+a y+a z=0, x-a y+z\) \(\mathbf{0}\), possess non-zero solutions, are given by :

1 1,2
2 \(1,-1\)
3 1,0
4 none of these
Matrix and Determinant

79453 If \(n\) is an integer and if
\(\left|\begin{array}{lll}
x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right),\)
then \(n\) equals

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79454 The value of \(\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & (n+2) ! & (n+3) ! \\ (n+2) ! & (n+3) ! & (n+4) !\end{array}\right|\) is

1 \(\mathrm{n}\) ! \((\mathrm{n}+2)\) ! \((\mathrm{n}+4)\) !
2 \(2\{(\mathrm{n}+2) !\} 3\)
3 \((\mathrm{n}+1)\) ! \((\mathrm{n}+2) !(\mathrm{n}+3)\) !
4 \(2(n !)(n+1) !(n+2)\) !
Matrix and Determinant

79455 The value of \(\theta\) lying in \((0, \pi)\) and satisfying the
equation \(\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \\ \cos \theta & 0 & \sin \theta\end{array}\right|=0\) is

1 \(\pi / 4\)
2 \(3 \pi / 4\)
3 \(2 \pi / 3\)
4 \(5 \pi / 6\)
Matrix and Determinant

79456 If \(\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\), then the number of distinct real roots of this equation in the interval \(-\pi / 2

1 2
2 0
3 1
4 3
Matrix and Determinant

79452 The values of a for which the system of equation \(x+y+z=0, x+a y+a z=0, x-a y+z\) \(\mathbf{0}\), possess non-zero solutions, are given by :

1 1,2
2 \(1,-1\)
3 1,0
4 none of these
Matrix and Determinant

79453 If \(n\) is an integer and if
\(\left|\begin{array}{lll}
x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right),\)
then \(n\) equals

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79454 The value of \(\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & (n+2) ! & (n+3) ! \\ (n+2) ! & (n+3) ! & (n+4) !\end{array}\right|\) is

1 \(\mathrm{n}\) ! \((\mathrm{n}+2)\) ! \((\mathrm{n}+4)\) !
2 \(2\{(\mathrm{n}+2) !\} 3\)
3 \((\mathrm{n}+1)\) ! \((\mathrm{n}+2) !(\mathrm{n}+3)\) !
4 \(2(n !)(n+1) !(n+2)\) !
Matrix and Determinant

79455 The value of \(\theta\) lying in \((0, \pi)\) and satisfying the
equation \(\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \\ \cos \theta & 0 & \sin \theta\end{array}\right|=0\) is

1 \(\pi / 4\)
2 \(3 \pi / 4\)
3 \(2 \pi / 3\)
4 \(5 \pi / 6\)
Matrix and Determinant

79456 If \(\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\), then the number of distinct real roots of this equation in the interval \(-\pi / 2

1 2
2 0
3 1
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79452 The values of a for which the system of equation \(x+y+z=0, x+a y+a z=0, x-a y+z\) \(\mathbf{0}\), possess non-zero solutions, are given by :

1 1,2
2 \(1,-1\)
3 1,0
4 none of these
Matrix and Determinant

79453 If \(n\) is an integer and if
\(\left|\begin{array}{lll}
x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right),\)
then \(n\) equals

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79454 The value of \(\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & (n+2) ! & (n+3) ! \\ (n+2) ! & (n+3) ! & (n+4) !\end{array}\right|\) is

1 \(\mathrm{n}\) ! \((\mathrm{n}+2)\) ! \((\mathrm{n}+4)\) !
2 \(2\{(\mathrm{n}+2) !\} 3\)
3 \((\mathrm{n}+1)\) ! \((\mathrm{n}+2) !(\mathrm{n}+3)\) !
4 \(2(n !)(n+1) !(n+2)\) !
Matrix and Determinant

79455 The value of \(\theta\) lying in \((0, \pi)\) and satisfying the
equation \(\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \\ \cos \theta & 0 & \sin \theta\end{array}\right|=0\) is

1 \(\pi / 4\)
2 \(3 \pi / 4\)
3 \(2 \pi / 3\)
4 \(5 \pi / 6\)
Matrix and Determinant

79456 If \(\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\), then the number of distinct real roots of this equation in the interval \(-\pi / 2

1 2
2 0
3 1
4 3
Matrix and Determinant

79452 The values of a for which the system of equation \(x+y+z=0, x+a y+a z=0, x-a y+z\) \(\mathbf{0}\), possess non-zero solutions, are given by :

1 1,2
2 \(1,-1\)
3 1,0
4 none of these
Matrix and Determinant

79453 If \(n\) is an integer and if
\(\left|\begin{array}{lll}
x^{n} & x^{n+2} & x^{n+3} \\ y^{n} & y^{n+2} & y^{n+3} \\ z^{n} & z^{n+2} & z^{n+3} \end{array}\right|=(x-y)(y-z)(z-x)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right),\)
then \(n\) equals

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79454 The value of \(\left|\begin{array}{ccc}n ! & (n+1) ! & (n+2) ! \\ (n+1) ! & (n+2) ! & (n+3) ! \\ (n+2) ! & (n+3) ! & (n+4) !\end{array}\right|\) is

1 \(\mathrm{n}\) ! \((\mathrm{n}+2)\) ! \((\mathrm{n}+4)\) !
2 \(2\{(\mathrm{n}+2) !\} 3\)
3 \((\mathrm{n}+1)\) ! \((\mathrm{n}+2) !(\mathrm{n}+3)\) !
4 \(2(n !)(n+1) !(n+2)\) !
Matrix and Determinant

79455 The value of \(\theta\) lying in \((0, \pi)\) and satisfying the
equation \(\left|\begin{array}{ccc}\sin \theta & \cos \theta & 0 \\ 0 & \sin \theta & \cos \theta \\ \cos \theta & 0 & \sin \theta\end{array}\right|=0\) is

1 \(\pi / 4\)
2 \(3 \pi / 4\)
3 \(2 \pi / 3\)
4 \(5 \pi / 6\)
Matrix and Determinant

79456 If \(\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0\), then the number of distinct real roots of this equation in the interval \(-\pi / 2

1 2
2 0
3 1
4 3