Concept of Elementary Row and Column Operation
Matrix and Determinant

79428 The equation \(\Delta=\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0} \quad\) is satisfied when

1 \(x=\frac{1}{3(a+b+c)}\)
2 \(x=\frac{1}{2(a+b+c)}\)
3 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
4 \(\mathrm{x}=\frac{1}{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})\)
Matrix and Determinant

79429 If \(A, B, C\) are the angles of a triangle, then
\(\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|\) equals

1 0
2 -1
3 \(2 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}\)
4 none of these
Matrix and Determinant

79430 \(\left|\begin{array}{cccc} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2 \end{array}\right|=\)

1 2
2 -1
3 3
4 none of these
Matrix and Determinant

79431 If \(A+B+C=\pi\), then \(\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1\end{array}\right|=\) \(\sin ^{2} \mathrm{C} \cot C 1\)

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79428 The equation \(\Delta=\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0} \quad\) is satisfied when

1 \(x=\frac{1}{3(a+b+c)}\)
2 \(x=\frac{1}{2(a+b+c)}\)
3 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
4 \(\mathrm{x}=\frac{1}{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})\)
Matrix and Determinant

79429 If \(A, B, C\) are the angles of a triangle, then
\(\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|\) equals

1 0
2 -1
3 \(2 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}\)
4 none of these
Matrix and Determinant

79430 \(\left|\begin{array}{cccc} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2 \end{array}\right|=\)

1 2
2 -1
3 3
4 none of these
Matrix and Determinant

79431 If \(A+B+C=\pi\), then \(\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1\end{array}\right|=\) \(\sin ^{2} \mathrm{C} \cot C 1\)

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79428 The equation \(\Delta=\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0} \quad\) is satisfied when

1 \(x=\frac{1}{3(a+b+c)}\)
2 \(x=\frac{1}{2(a+b+c)}\)
3 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
4 \(\mathrm{x}=\frac{1}{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})\)
Matrix and Determinant

79429 If \(A, B, C\) are the angles of a triangle, then
\(\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|\) equals

1 0
2 -1
3 \(2 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}\)
4 none of these
Matrix and Determinant

79430 \(\left|\begin{array}{cccc} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2 \end{array}\right|=\)

1 2
2 -1
3 3
4 none of these
Matrix and Determinant

79431 If \(A+B+C=\pi\), then \(\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1\end{array}\right|=\) \(\sin ^{2} \mathrm{C} \cot C 1\)

1 1
2 -1
3 2
4 none of these
Matrix and Determinant

79428 The equation \(\Delta=\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0} \quad\) is satisfied when

1 \(x=\frac{1}{3(a+b+c)}\)
2 \(x=\frac{1}{2(a+b+c)}\)
3 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
4 \(\mathrm{x}=\frac{1}{3}(\mathrm{a}+\mathrm{b}+\mathrm{c})\)
Matrix and Determinant

79429 If \(A, B, C\) are the angles of a triangle, then
\(\Delta=\left|\begin{array}{ccc}-1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1\end{array}\right|\) equals

1 0
2 -1
3 \(2 \cos \mathrm{A} \cos \mathrm{B} \cos \mathrm{C}\)
4 none of these
Matrix and Determinant

79430 \(\left|\begin{array}{cccc} 21 & 17 & 7 & 10 \\ 24 & 22 & 6 & 10 \\ 6 & 8 & 2 & 3 \\ 6 & 7 & 1 & 2 \end{array}\right|=\)

1 2
2 -1
3 3
4 none of these
Matrix and Determinant

79431 If \(A+B+C=\pi\), then \(\left|\begin{array}{lll}\sin ^{2} A & \cot A & 1 \\ \sin ^{2} B & \cot B & 1\end{array}\right|=\) \(\sin ^{2} \mathrm{C} \cot C 1\)

1 1
2 -1
3 2
4 none of these