79424 If \(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|\)
(A) : Given,\(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x-1) x(x-1)\end{array}\right|\)Operating \(\mathrm{C}_{3 \rightarrow} \mathrm{C}_{3}-\mathrm{C}_{1}-\mathrm{C}_{2}\), we get\(\left.f(x)=\left|\begin{array}{ccc}1 & x & 0 \\ 2 x & x(x-1) & 0 \\ 3 x(x-1) & x(x-1)(x-2) & 0\end{array}\right|, \because C_{3}=0\right)\)a \(\quad \mathbf{b} \quad \boldsymbol{\alpha a}-\mathbf{b}\)
79425 If \(b \quad c \quad b \alpha-c=0\) and \(\alpha \neq \frac{1}{2}\), then \(a, b, c\) are in 210
(B) : According to given summation,If |abαa−bbcαb−c210|=0Operating C3→C3−αC1−C2, we get|ab0bc021−2α+1|=0⇒a[c(−2α+1)−b[b(−2α+1]−0⇒(−2α+1)(ac−b2)=0⇒(−2α+1)=0 or (ac−b2)=0 But a≠12 and ac=b2
79426 The solution for |4x6x+28x+16x+29x+312x8x+112x16x+2|=0 isis given by
(B) : Given,|4x6x+28x+16x+29x+312x8x+112x16x+2|=0Operating C3→C3−2C1|4x6x+216x+29x+3−48x+112x0|=0Now, taking 2 common from C1, we get|2x6x+213x+19x+3−44x+1212x0ngC2→→C2−3C1|=0Operating C2→C2−3C|2x213x+10−44x+12−320|=0Multiply by 2 in column 2 , we get|2x413x+10−44x+12−30|=0Operating R2→2R2+4R1|2x4111x+11604x+12−30|=01(−33x−3)−64x−8−33x−3−64x−8=0−97x−11=0x=−1197 Now, 1(−33x−3)−64x−8=0
79427 The value of |1+ωω2−ω1+ω2ω−ω2ω2+ωω−ω2| is equal to( ω being an imaginary cube root of unity)
(D) : It is given that,Δ=|1+ωω2−ω1+ω2ω−ω2ω2+ωω−ω2|We know that:-[1+ω+ω2=0]Δ=|−ω2ω2−ω−ωω−ω2−1ω−ω2|Operating C1→C1+C2, we getΔ=|0ω2−ω0ω−ω2−1+ωω−ω2|Δ=(−1+ω)(−ω4+ω2)=(−1+ω)(−ω+ω2)=ω−ω2−ω2+ω3=1+ω−2ω2=−ω2−2ω2Δ=−3ω2
79424 If f(x)=|1xx+12xx(x−1)(x+1)x3x(x−1)x(x−1)(x−2)(x+1)x(x−1)|
(A) : Given,f(x)=|1xx+12xx(x−1)(x+1)x3x(x−1)x(x−1)(x−2)(x−1)x(x−1)|Operating C3→C3−C1−C2, we getf(x)=|1x02xx(x−1)03x(x−1)x(x−1)(x−2)0|,∵C3=0)a b\boldsymbolαa−b
79425 If bcbα−c=0 and α≠12, then a,b,c are in 210