Concept of Elementary Row and Column Operation
Matrix and Determinant

79424 If \(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|\)

1 0
2 1
3 100
4 -100
Matrix and Determinant

79425 If \(b \quad c \quad b \alpha-c=0\) and \(\alpha \neq \frac{1}{2}\), then \(a, b, c\) are in \(\begin{array}{lll}2 & 1 & 0\end{array}\)

1 A.P.
2 G.P.
3 H.P.
4 none of these
Matrix and Determinant

79426 The solution for \(\left|\begin{array}{ccc}4 x & 6 x+2 & 8 x+1 \\ 6 x+2 & 9 x+3 & 12 x \\ 8 x+1 & 12 x & 16 x+2\end{array}\right|=0\) is
is given by

1 \(x=\frac{-13}{71}\)
2 \(x=\frac{-11}{97}\)
3 \(x=\frac{-7}{43}\)
4 \(x=\frac{-1}{11}\)
Matrix and Determinant

79427 The value of \(\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|\) is equal to
( \(\omega\) being an imaginary cube root of unity)

1 0
2 \(2 \omega\)
3 \(2 \omega^{2}\)
4 \(-3 \omega^{2}\)
Matrix and Determinant

79424 If \(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|\)

1 0
2 1
3 100
4 -100
Matrix and Determinant

79425 If \(b \quad c \quad b \alpha-c=0\) and \(\alpha \neq \frac{1}{2}\), then \(a, b, c\) are in \(\begin{array}{lll}2 & 1 & 0\end{array}\)

1 A.P.
2 G.P.
3 H.P.
4 none of these
Matrix and Determinant

79426 The solution for \(\left|\begin{array}{ccc}4 x & 6 x+2 & 8 x+1 \\ 6 x+2 & 9 x+3 & 12 x \\ 8 x+1 & 12 x & 16 x+2\end{array}\right|=0\) is
is given by

1 \(x=\frac{-13}{71}\)
2 \(x=\frac{-11}{97}\)
3 \(x=\frac{-7}{43}\)
4 \(x=\frac{-1}{11}\)
Matrix and Determinant

79427 The value of \(\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|\) is equal to
( \(\omega\) being an imaginary cube root of unity)

1 0
2 \(2 \omega\)
3 \(2 \omega^{2}\)
4 \(-3 \omega^{2}\)
Matrix and Determinant

79424 If \(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|\)

1 0
2 1
3 100
4 -100
Matrix and Determinant

79425 If \(b \quad c \quad b \alpha-c=0\) and \(\alpha \neq \frac{1}{2}\), then \(a, b, c\) are in \(\begin{array}{lll}2 & 1 & 0\end{array}\)

1 A.P.
2 G.P.
3 H.P.
4 none of these
Matrix and Determinant

79426 The solution for \(\left|\begin{array}{ccc}4 x & 6 x+2 & 8 x+1 \\ 6 x+2 & 9 x+3 & 12 x \\ 8 x+1 & 12 x & 16 x+2\end{array}\right|=0\) is
is given by

1 \(x=\frac{-13}{71}\)
2 \(x=\frac{-11}{97}\)
3 \(x=\frac{-7}{43}\)
4 \(x=\frac{-1}{11}\)
Matrix and Determinant

79427 The value of \(\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|\) is equal to
( \(\omega\) being an imaginary cube root of unity)

1 0
2 \(2 \omega\)
3 \(2 \omega^{2}\)
4 \(-3 \omega^{2}\)
Matrix and Determinant

79424 If \(f(x)=\left|\begin{array}{ccc}1 & x & x+1 \\ 2 x & x(x-1) & (x+1) x \\ 3 x(x-1) & x(x-1)(x-2) & (x+1) x(x-1)\end{array}\right|\)

1 0
2 1
3 100
4 -100
Matrix and Determinant

79425 If \(b \quad c \quad b \alpha-c=0\) and \(\alpha \neq \frac{1}{2}\), then \(a, b, c\) are in \(\begin{array}{lll}2 & 1 & 0\end{array}\)

1 A.P.
2 G.P.
3 H.P.
4 none of these
Matrix and Determinant

79426 The solution for \(\left|\begin{array}{ccc}4 x & 6 x+2 & 8 x+1 \\ 6 x+2 & 9 x+3 & 12 x \\ 8 x+1 & 12 x & 16 x+2\end{array}\right|=0\) is
is given by

1 \(x=\frac{-13}{71}\)
2 \(x=\frac{-11}{97}\)
3 \(x=\frac{-7}{43}\)
4 \(x=\frac{-1}{11}\)
Matrix and Determinant

79427 The value of \(\left|\begin{array}{ccc}1+\omega & \omega^{2} & -\omega \\ 1+\omega^{2} & \omega & -\omega^{2} \\ \omega^{2}+\omega & \omega & -\omega^{2}\end{array}\right|\) is equal to
( \(\omega\) being an imaginary cube root of unity)

1 0
2 \(2 \omega\)
3 \(2 \omega^{2}\)
4 \(-3 \omega^{2}\)