79196
Let \(A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cost } & \text { sint } \\ 0 & - \text { sint } & \text { cost }\end{array}\right)\)
Let \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) be the \(\operatorname{roots}\) of \(\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=\mathbf{0}\), where \(\mathbf{I}_{3}\) denotes the identity matrix. If \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1\) then the set of possible values of \(t,-\pi \leq t<\pi\) is
79196
Let \(A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cost } & \text { sint } \\ 0 & - \text { sint } & \text { cost }\end{array}\right)\)
Let \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) be the \(\operatorname{roots}\) of \(\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=\mathbf{0}\), where \(\mathbf{I}_{3}\) denotes the identity matrix. If \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1\) then the set of possible values of \(t,-\pi \leq t<\pi\) is
79196
Let \(A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cost } & \text { sint } \\ 0 & - \text { sint } & \text { cost }\end{array}\right)\)
Let \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) be the \(\operatorname{roots}\) of \(\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=\mathbf{0}\), where \(\mathbf{I}_{3}\) denotes the identity matrix. If \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1\) then the set of possible values of \(t,-\pi \leq t<\pi\) is
79196
Let \(A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cost } & \text { sint } \\ 0 & - \text { sint } & \text { cost }\end{array}\right)\)
Let \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) be the \(\operatorname{roots}\) of \(\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=\mathbf{0}\), where \(\mathbf{I}_{3}\) denotes the identity matrix. If \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1\) then the set of possible values of \(t,-\pi \leq t<\pi\) is
79196
Let \(A=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \text { cost } & \text { sint } \\ 0 & - \text { sint } & \text { cost }\end{array}\right)\)
Let \(\lambda_{1}, \lambda_{2}, \lambda_{3}\) be the \(\operatorname{roots}\) of \(\operatorname{det}\left(\mathbf{A}-\lambda \mathbf{I}_{3}\right)=\mathbf{0}\), where \(\mathbf{I}_{3}\) denotes the identity matrix. If \(\lambda_{1}+\lambda_{2}+\lambda_{3}=\sqrt{2}+1\) then the set of possible values of \(t,-\pi \leq t<\pi\) is