79200
If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is
79202
The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by
79200
If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is
79202
The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by
79200
If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is
79202
The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by
79200
If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is
79202
The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by