Determinants in 2-D
Matrix and Determinant

79199 The area of triangle with vertices \((\mathrm{k}, 0),(4,0)\),
\((0,2)\)

1 8
2 0 or -8
3 0
4 0 or 8
Matrix and Determinant

79200 If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is

1 \(\frac{1}{8} \mathrm{abc}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{4} \mathrm{abc}\)
4 \(\frac{1}{4}\)
Matrix and Determinant

79201 If the lines \(x+2 a y+a=0, x+3 b y+b=0\) and \(x+4 c y+c=0\) are concurrent, then \(a, b, c\) are in

1 \(\mathrm{AP}\)
2 GP
3 HP
4 None of these
Matrix and Determinant

79202 The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by

1 \(x=0\)
2 \(\mathrm{x}=\mathrm{a}\)
3 \(x=\frac{1}{3}(a+b+c)\)
4 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79199 The area of triangle with vertices \((\mathrm{k}, 0),(4,0)\),
\((0,2)\)

1 8
2 0 or -8
3 0
4 0 or 8
Matrix and Determinant

79200 If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is

1 \(\frac{1}{8} \mathrm{abc}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{4} \mathrm{abc}\)
4 \(\frac{1}{4}\)
Matrix and Determinant

79201 If the lines \(x+2 a y+a=0, x+3 b y+b=0\) and \(x+4 c y+c=0\) are concurrent, then \(a, b, c\) are in

1 \(\mathrm{AP}\)
2 GP
3 HP
4 None of these
Matrix and Determinant

79202 The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by

1 \(x=0\)
2 \(\mathrm{x}=\mathrm{a}\)
3 \(x=\frac{1}{3}(a+b+c)\)
4 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
Matrix and Determinant

79199 The area of triangle with vertices \((\mathrm{k}, 0),(4,0)\),
\((0,2)\)

1 8
2 0 or -8
3 0
4 0 or 8
Matrix and Determinant

79200 If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is

1 \(\frac{1}{8} \mathrm{abc}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{4} \mathrm{abc}\)
4 \(\frac{1}{4}\)
Matrix and Determinant

79201 If the lines \(x+2 a y+a=0, x+3 b y+b=0\) and \(x+4 c y+c=0\) are concurrent, then \(a, b, c\) are in

1 \(\mathrm{AP}\)
2 GP
3 HP
4 None of these
Matrix and Determinant

79202 The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by

1 \(x=0\)
2 \(\mathrm{x}=\mathrm{a}\)
3 \(x=\frac{1}{3}(a+b+c)\)
4 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)
Matrix and Determinant

79199 The area of triangle with vertices \((\mathrm{k}, 0),(4,0)\),
\((0,2)\)

1 8
2 0 or -8
3 0
4 0 or 8
Matrix and Determinant

79200 If \(\left|\begin{array}{lll}2 a & x_{1} & y_{1} \\ 2 b & x_{2} & y_{2} \\ 2 c & x_{3} & y_{3}\end{array}\right|=\frac{a b c}{2} \neq 0\), then the area of the
triangle whose vertices are \(\left(\frac{x_{1}}{a}, \frac{y_{1}}{a}\right),\left(\frac{x_{2}}{b}, \frac{y_{2}}{b}\right)\)
and \(\left(\frac{\mathrm{x}_{3}}{\mathrm{c}}, \frac{\mathrm{y}_{3}}{\mathrm{c}}\right)\) is

1 \(\frac{1}{8} \mathrm{abc}\)
2 \(\frac{1}{8}\)
3 \(\frac{1}{4} \mathrm{abc}\)
4 \(\frac{1}{4}\)
Matrix and Determinant

79201 If the lines \(x+2 a y+a=0, x+3 b y+b=0\) and \(x+4 c y+c=0\) are concurrent, then \(a, b, c\) are in

1 \(\mathrm{AP}\)
2 GP
3 HP
4 None of these
Matrix and Determinant

79202 The equation \(\left|\begin{array}{lll}\mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} \\ \mathbf{x}-\mathbf{b} & \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} \\ \mathbf{x}-\mathbf{c} & \mathbf{x}-\mathbf{a} & \mathbf{x}-\mathbf{b}\end{array}\right|=\mathbf{0}\) where \(\mathrm{a}\),
\(b, c\) are different is satisfied by

1 \(x=0\)
2 \(\mathrm{x}=\mathrm{a}\)
3 \(x=\frac{1}{3}(a+b+c)\)
4 \(\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}\)