Determinants in 2-D
Matrix and Determinant

79138 If \(\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0\), then \(a, b, c\) are

1 equal
2 in A.P.
3 in G.P.
4 in H.P.
Matrix and Determinant

79140 If \(P=\left|\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right|\) is the adjoint of a \(3 \times 3\) matrix \(A\) and \(|A|=4\), then \(\alpha\) is equal to

1 11
2 5
3 0
4 4
Matrix and Determinant

79141 If \(A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is

1 \(\mathrm{a}^{27}\)
2 \(a^{9}\)
3 \(a^{6}\)
4 \(a^{2}\)
Matrix and Determinant

79142 If \(a, b, c\) are cube roots of unity, then
\(\left|\begin{array}{lll}
\mathbf{e}^{a} & \mathbf{e}^{2 a} & e^{3 a}-1 \\ e^{b} & e^{2 b} & e^{3 b}-1 \\ e^{c} & e^{2 c} & e^{3 c}-1 \end{array}\right|=\)

1 0
2 e
3 \(\mathrm{e}^{2}\)
4 \(\mathrm{e}^{3}\)
Matrix and Determinant

79138 If \(\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0\), then \(a, b, c\) are

1 equal
2 in A.P.
3 in G.P.
4 in H.P.
Matrix and Determinant

79140 If \(P=\left|\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right|\) is the adjoint of a \(3 \times 3\) matrix \(A\) and \(|A|=4\), then \(\alpha\) is equal to

1 11
2 5
3 0
4 4
Matrix and Determinant

79141 If \(A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is

1 \(\mathrm{a}^{27}\)
2 \(a^{9}\)
3 \(a^{6}\)
4 \(a^{2}\)
Matrix and Determinant

79142 If \(a, b, c\) are cube roots of unity, then
\(\left|\begin{array}{lll}
\mathbf{e}^{a} & \mathbf{e}^{2 a} & e^{3 a}-1 \\ e^{b} & e^{2 b} & e^{3 b}-1 \\ e^{c} & e^{2 c} & e^{3 c}-1 \end{array}\right|=\)

1 0
2 e
3 \(\mathrm{e}^{2}\)
4 \(\mathrm{e}^{3}\)
Matrix and Determinant

79138 If \(\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0\), then \(a, b, c\) are

1 equal
2 in A.P.
3 in G.P.
4 in H.P.
Matrix and Determinant

79140 If \(P=\left|\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right|\) is the adjoint of a \(3 \times 3\) matrix \(A\) and \(|A|=4\), then \(\alpha\) is equal to

1 11
2 5
3 0
4 4
Matrix and Determinant

79141 If \(A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is

1 \(\mathrm{a}^{27}\)
2 \(a^{9}\)
3 \(a^{6}\)
4 \(a^{2}\)
Matrix and Determinant

79142 If \(a, b, c\) are cube roots of unity, then
\(\left|\begin{array}{lll}
\mathbf{e}^{a} & \mathbf{e}^{2 a} & e^{3 a}-1 \\ e^{b} & e^{2 b} & e^{3 b}-1 \\ e^{c} & e^{2 c} & e^{3 c}-1 \end{array}\right|=\)

1 0
2 e
3 \(\mathrm{e}^{2}\)
4 \(\mathrm{e}^{3}\)
Matrix and Determinant

79138 If \(\left|\begin{array}{lll}x+1 & x+2 & x+a \\ x+2 & x+3 & x+b \\ x+3 & x+4 & x+c\end{array}\right|=0\), then \(a, b, c\) are

1 equal
2 in A.P.
3 in G.P.
4 in H.P.
Matrix and Determinant

79140 If \(P=\left|\begin{array}{lll}1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4\end{array}\right|\) is the adjoint of a \(3 \times 3\) matrix \(A\) and \(|A|=4\), then \(\alpha\) is equal to

1 11
2 5
3 0
4 4
Matrix and Determinant

79141 If \(A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is

1 \(\mathrm{a}^{27}\)
2 \(a^{9}\)
3 \(a^{6}\)
4 \(a^{2}\)
Matrix and Determinant

79142 If \(a, b, c\) are cube roots of unity, then
\(\left|\begin{array}{lll}
\mathbf{e}^{a} & \mathbf{e}^{2 a} & e^{3 a}-1 \\ e^{b} & e^{2 b} & e^{3 b}-1 \\ e^{c} & e^{2 c} & e^{3 c}-1 \end{array}\right|=\)

1 0
2 e
3 \(\mathrm{e}^{2}\)
4 \(\mathrm{e}^{3}\)