Determinants in 2-D
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79143 If |bb21+b3cc21+c3|=0 and the vectors
(1,a,a2),(1,b,b2),(1,c,c2) are non-coplaner, then abc =

1 2
2 -1
3 1
4 0
Matrix and Determinant

79144 If Δ1=|xbbaxbaax| and Δ2=|xbax|, then ddx(Δ1) is equal to

1 3(Δ2)2
2 3(Δ2)1/2
3 3Δ2
4 3Δ22
Matrix and Determinant

79145 If 1,ω,ω2 are the roots of unity, the
Δ=|1ωnω2nωnω2n1| is equal to 

1 ω2
2 0
3 1
4 ω
Matrix and Determinant

79146 If a+b+c=0 then determinant
|abc2a2a2bbca2b2c2ccab| is equal to, 

1 0
2 1
3 2
4 3
Matrix and Determinant

79143 If |bb21+b3cc21+c3|=0 and the vectors
(1,a,a2),(1,b,b2),(1,c,c2) are non-coplaner, then abc =

1 2
2 -1
3 1
4 0
Matrix and Determinant

79144 If Δ1=|xbbaxbaax| and Δ2=|xbax|, then ddx(Δ1) is equal to

1 3(Δ2)2
2 3(Δ2)1/2
3 3Δ2
4 3Δ22
Matrix and Determinant

79145 If 1,ω,ω2 are the roots of unity, the
Δ=|1ωnω2nωnω2n1| is equal to 

1 ω2
2 0
3 1
4 ω
Matrix and Determinant

79146 If a+b+c=0 then determinant
|abc2a2a2bbca2b2c2ccab| is equal to, 

1 0
2 1
3 2
4 3
Matrix and Determinant

79143 If |bb21+b3cc21+c3|=0 and the vectors
(1,a,a2),(1,b,b2),(1,c,c2) are non-coplaner, then abc =

1 2
2 -1
3 1
4 0
Matrix and Determinant

79144 If Δ1=|xbbaxbaax| and Δ2=|xbax|, then ddx(Δ1) is equal to

1 3(Δ2)2
2 3(Δ2)1/2
3 3Δ2
4 3Δ22
Matrix and Determinant

79145 If 1,ω,ω2 are the roots of unity, the
Δ=|1ωnω2nωnω2n1| is equal to 

1 ω2
2 0
3 1
4 ω
Matrix and Determinant

79146 If a+b+c=0 then determinant
|abc2a2a2bbca2b2c2ccab| is equal to, 

1 0
2 1
3 2
4 3
Matrix and Determinant

79143 If |bb21+b3cc21+c3|=0 and the vectors
(1,a,a2),(1,b,b2),(1,c,c2) are non-coplaner, then abc =

1 2
2 -1
3 1
4 0
Matrix and Determinant

79144 If Δ1=|xbbaxbaax| and Δ2=|xbax|, then ddx(Δ1) is equal to

1 3(Δ2)2
2 3(Δ2)1/2
3 3Δ2
4 3Δ22
Matrix and Determinant

79145 If 1,ω,ω2 are the roots of unity, the
Δ=|1ωnω2nωnω2n1| is equal to 

1 ω2
2 0
3 1
4 ω
Matrix and Determinant

79146 If a+b+c=0 then determinant
|abc2a2a2bbca2b2c2ccab| is equal to, 

1 0
2 1
3 2
4 3