79143 If |bb21+b3cc21+c3|=0 and the vectors(1,a,a2),(1,b,b2),(1,c,c2) are non-coplaner, then abc =
(B) : According to given summation,|aa21+a3bb21+b3cc21+c3|=|aa21bb21cc21|+|aa2a3bb2b3cc2c3||1aa21bb21cc2|+abc|1aa21bb21cc2|=0(1+abc)|1aa21bb21cc2|=01+abc=0abc=−1[∵ the determinant ≠0]
79144 If Δ1=|xbbaxbaax| and Δ2=|xbax|, then ddx(Δ1) is equal to
(C) : We have,,Δ1=|xbbaxbaax| and Δ2=|xbax|In the given matrix Δ1 expand along R1Δ1=x(x2−ab)−b(ax−ab)+b(a2−ax)Δ1=x3−abx−abx+ab2+ba2+ba2−abxΔ1=x3−3abx+ab(a+b)ddx(Δ1)=ddx(x3−3abx+ab(a+b))ddx(Δ1)=3x2−3ab+0ddx(Δ1)=3(x2−ab)Here, Δ2=|xbax|=x2−abSubstituting in equation (i),ddx(Δ1)=3(Δ2)∴ddx(Δ1)=3Δ2
79145 If 1,ω,ω2 are the roots of unity, theΔ=|1ωnω2nωnω2n1| is equal to
(B) : Given that,Δ=|1ωnω2nωnω2n1ω2n1ωn|=1(ω3n−1)−ωn(ω2n−ω2n)+ω2n(ωn−ω4n)=ω3n−1−ω3n+ω3n+ω3n−ω6n=1−1−1+1+1−1[∵ω3n=1]=0
79146 If a+b+c=0 then determinant|a−b−c2a2a2bb−c−a2b2c2cc−a−b| is equal to,
(A) : It is given that,a+b+c=0 And |a−b−c2a2a2bb−c−a2b2c2cc−a−b|Operating R1→R1+R2+R3|a+b+ca+b+ca+b+c2bb−c−a2b2c2cc−a−b|Take (a+b+c) common from R1=(a+b+c)|1112bb−c−a2b2c2cc−a−b|=0