79144 If \(\Delta_{1}=\left|\begin{array}{lll}\mathbf{x} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{ll}\mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{x}\end{array}\right|\), then \(\frac{\mathbf{d}}{\mathbf{d x}}\left(\Delta_{1}\right)\) is equal to
79146
If \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\) then determinant
\(\left|\begin{array}{ccc} \mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & \mathbf{2 a} \\ 2 \mathbf{b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & \mathbf{2 b} \\ \mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b} \end{array}\right| \text { is equal to, }\)
79144 If \(\Delta_{1}=\left|\begin{array}{lll}\mathbf{x} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{ll}\mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{x}\end{array}\right|\), then \(\frac{\mathbf{d}}{\mathbf{d x}}\left(\Delta_{1}\right)\) is equal to
79146
If \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\) then determinant
\(\left|\begin{array}{ccc} \mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & \mathbf{2 a} \\ 2 \mathbf{b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & \mathbf{2 b} \\ \mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b} \end{array}\right| \text { is equal to, }\)
79144 If \(\Delta_{1}=\left|\begin{array}{lll}\mathbf{x} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{ll}\mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{x}\end{array}\right|\), then \(\frac{\mathbf{d}}{\mathbf{d x}}\left(\Delta_{1}\right)\) is equal to
79146
If \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\) then determinant
\(\left|\begin{array}{ccc} \mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & \mathbf{2 a} \\ 2 \mathbf{b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & \mathbf{2 b} \\ \mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b} \end{array}\right| \text { is equal to, }\)
79144 If \(\Delta_{1}=\left|\begin{array}{lll}\mathbf{x} & \mathbf{b} & \mathbf{b} \\ \mathbf{a} & \mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{a} & \mathbf{x}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{ll}\mathbf{x} & \mathbf{b} \\ \mathbf{a} & \mathbf{x}\end{array}\right|\), then \(\frac{\mathbf{d}}{\mathbf{d x}}\left(\Delta_{1}\right)\) is equal to
79146
If \(\mathbf{a}+\mathbf{b}+\mathbf{c}=\mathbf{0}\) then determinant
\(\left|\begin{array}{ccc} \mathbf{a}-\mathbf{b}-\mathbf{c} & \mathbf{2 a} & \mathbf{2 a} \\ 2 \mathbf{b} & \mathbf{b}-\mathbf{c}-\mathbf{a} & \mathbf{2 b} \\ \mathbf{2 c} & \mathbf{2 c} & \mathbf{c}-\mathbf{a}-\mathbf{b} \end{array}\right| \text { is equal to, }\)