79098
If \(\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=\mathbf{0}\), then the lines \(\mathbf{a}_{i} \mathbf{x}+\)
\(\mathbf{0}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3})\) represent
79099
Let \(a, b, c, d, \in R\) be such that \(a d-b c \neq 0\) and \(e\) be a positive number other than 1 . If
\(\mathbf{x}^{\mathrm{a}} \mathbf{y}^{\mathrm{b}}=\mathbf{e}^{\mathrm{m}}, \mathbf{x}^{\mathrm{c}} \mathbf{y}^{\mathrm{d}}=\mathbf{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}\mathbf{m} & \mathbf{b} \\ \mathbf{n} & \mathbf{d}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\mathbf{a} & \mathbf{m} \\ \mathbf{c} & \mathbf{n}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\), then the values of \(x\) and \(y\) are respectively.
79102
Let \(\alpha\) be a root of the equation \((a-c) x^{2}+(b-\) a) \(x+(c-b)=0\) where \(a, b, c\) are distinct real numbers such that the matrix
\({\left[\begin{array}{lll}
\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array}\right] \text { is singular. Then the value of }}\)
\(\frac{(\mathbf{a}-\mathbf{c})^{2}}{(\mathbf{b}-\mathbf{a})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{b}-\mathbf{a})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{c}-\mathbf{b})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{b}-\mathbf{a})} \text { is }\)
79098
If \(\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=\mathbf{0}\), then the lines \(\mathbf{a}_{i} \mathbf{x}+\)
\(\mathbf{0}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3})\) represent
79099
Let \(a, b, c, d, \in R\) be such that \(a d-b c \neq 0\) and \(e\) be a positive number other than 1 . If
\(\mathbf{x}^{\mathrm{a}} \mathbf{y}^{\mathrm{b}}=\mathbf{e}^{\mathrm{m}}, \mathbf{x}^{\mathrm{c}} \mathbf{y}^{\mathrm{d}}=\mathbf{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}\mathbf{m} & \mathbf{b} \\ \mathbf{n} & \mathbf{d}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\mathbf{a} & \mathbf{m} \\ \mathbf{c} & \mathbf{n}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\), then the values of \(x\) and \(y\) are respectively.
79102
Let \(\alpha\) be a root of the equation \((a-c) x^{2}+(b-\) a) \(x+(c-b)=0\) where \(a, b, c\) are distinct real numbers such that the matrix
\({\left[\begin{array}{lll}
\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array}\right] \text { is singular. Then the value of }}\)
\(\frac{(\mathbf{a}-\mathbf{c})^{2}}{(\mathbf{b}-\mathbf{a})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{b}-\mathbf{a})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{c}-\mathbf{b})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{b}-\mathbf{a})} \text { is }\)
79098
If \(\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=\mathbf{0}\), then the lines \(\mathbf{a}_{i} \mathbf{x}+\)
\(\mathbf{0}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3})\) represent
79099
Let \(a, b, c, d, \in R\) be such that \(a d-b c \neq 0\) and \(e\) be a positive number other than 1 . If
\(\mathbf{x}^{\mathrm{a}} \mathbf{y}^{\mathrm{b}}=\mathbf{e}^{\mathrm{m}}, \mathbf{x}^{\mathrm{c}} \mathbf{y}^{\mathrm{d}}=\mathbf{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}\mathbf{m} & \mathbf{b} \\ \mathbf{n} & \mathbf{d}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\mathbf{a} & \mathbf{m} \\ \mathbf{c} & \mathbf{n}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\), then the values of \(x\) and \(y\) are respectively.
79102
Let \(\alpha\) be a root of the equation \((a-c) x^{2}+(b-\) a) \(x+(c-b)=0\) where \(a, b, c\) are distinct real numbers such that the matrix
\({\left[\begin{array}{lll}
\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array}\right] \text { is singular. Then the value of }}\)
\(\frac{(\mathbf{a}-\mathbf{c})^{2}}{(\mathbf{b}-\mathbf{a})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{b}-\mathbf{a})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{c}-\mathbf{b})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{b}-\mathbf{a})} \text { is }\)
79098
If \(\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=\mathbf{0}\), then the lines \(\mathbf{a}_{i} \mathbf{x}+\)
\(\mathbf{0}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3})\) represent
79099
Let \(a, b, c, d, \in R\) be such that \(a d-b c \neq 0\) and \(e\) be a positive number other than 1 . If
\(\mathbf{x}^{\mathrm{a}} \mathbf{y}^{\mathrm{b}}=\mathbf{e}^{\mathrm{m}}, \mathbf{x}^{\mathrm{c}} \mathbf{y}^{\mathrm{d}}=\mathbf{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}\mathbf{m} & \mathbf{b} \\ \mathbf{n} & \mathbf{d}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\mathbf{a} & \mathbf{m} \\ \mathbf{c} & \mathbf{n}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\), then the values of \(x\) and \(y\) are respectively.
79102
Let \(\alpha\) be a root of the equation \((a-c) x^{2}+(b-\) a) \(x+(c-b)=0\) where \(a, b, c\) are distinct real numbers such that the matrix
\({\left[\begin{array}{lll}
\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array}\right] \text { is singular. Then the value of }}\)
\(\frac{(\mathbf{a}-\mathbf{c})^{2}}{(\mathbf{b}-\mathbf{a})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{b}-\mathbf{a})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{c}-\mathbf{b})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{b}-\mathbf{a})} \text { is }\)
79098
If \(\left|\begin{array}{lll}\mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \\ \mathbf{a}_{3} & \mathbf{b}_{3} & \mathbf{c}_{3}\end{array}\right|=\mathbf{0}\), then the lines \(\mathbf{a}_{i} \mathbf{x}+\)
\(\mathbf{0}(\mathbf{i}=\mathbf{1}, \mathbf{2}, \mathbf{3})\) represent
79099
Let \(a, b, c, d, \in R\) be such that \(a d-b c \neq 0\) and \(e\) be a positive number other than 1 . If
\(\mathbf{x}^{\mathrm{a}} \mathbf{y}^{\mathrm{b}}=\mathbf{e}^{\mathrm{m}}, \mathbf{x}^{\mathrm{c}} \mathbf{y}^{\mathrm{d}}=\mathbf{e}^{\mathrm{n}}, \Delta_{1}=\left|\begin{array}{ll}\mathbf{m} & \mathbf{b} \\ \mathbf{n} & \mathbf{d}\end{array}\right|, \quad \Delta_{2}=\left|\begin{array}{ll}\mathbf{a} & \mathbf{m} \\ \mathbf{c} & \mathbf{n}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|\), then the values of \(x\) and \(y\) are respectively.
79102
Let \(\alpha\) be a root of the equation \((a-c) x^{2}+(b-\) a) \(x+(c-b)=0\) where \(a, b, c\) are distinct real numbers such that the matrix
\({\left[\begin{array}{lll}
\alpha^{2} & \alpha & 1 \\ 1 & 1 & 1 \\ \mathbf{a} & \mathbf{b} & \mathbf{c} \end{array}\right] \text { is singular. Then the value of }}\)
\(\frac{(\mathbf{a}-\mathbf{c})^{2}}{(\mathbf{b}-\mathbf{a})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{b}-\mathbf{a})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{c}-\mathbf{b})}+\frac{(\mathbf{c}-\mathbf{b})^{2}}{(\mathbf{a}-\mathbf{c})(\mathbf{b}-\mathbf{a})} \text { is }\)