Determinants and their Properties
Matrix and Determinant

79094 If
\(\begin{array}{lll}
1! & 2! & 3! \\ 2 ! & 3 ! & 4 ! \\ 3 ! & 4 ! & 5 ! \end{array}=2016K \text {, then } K=\)

1 84
2 \(\frac{1}{24}\)
3 24
4 \(\frac{1}{84}\)
Matrix and Determinant

79095 If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their
corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\)
then a possible value of the determinant of \(A\) is

1 4
2 3
3 2
4 1
Matrix and Determinant

79096 If \(\Delta_{1}=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|\) then \(\frac{\Delta_{1}}{\Delta_{2}}=\)

1 \(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\)
2 abc
3 \(2(a b+b c+c a)\)
4 \((a+b+c)^{2}\)
Matrix and Determinant

79097 If the determinant of the matrix
\(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)

1 0
2 1
3 -1
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79094 If
\(\begin{array}{lll}
1! & 2! & 3! \\ 2 ! & 3 ! & 4 ! \\ 3 ! & 4 ! & 5 ! \end{array}=2016K \text {, then } K=\)

1 84
2 \(\frac{1}{24}\)
3 24
4 \(\frac{1}{84}\)
Matrix and Determinant

79095 If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their
corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\)
then a possible value of the determinant of \(A\) is

1 4
2 3
3 2
4 1
Matrix and Determinant

79096 If \(\Delta_{1}=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|\) then \(\frac{\Delta_{1}}{\Delta_{2}}=\)

1 \(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\)
2 abc
3 \(2(a b+b c+c a)\)
4 \((a+b+c)^{2}\)
Matrix and Determinant

79097 If the determinant of the matrix
\(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)

1 0
2 1
3 -1
4 2
Matrix and Determinant

79094 If
\(\begin{array}{lll}
1! & 2! & 3! \\ 2 ! & 3 ! & 4 ! \\ 3 ! & 4 ! & 5 ! \end{array}=2016K \text {, then } K=\)

1 84
2 \(\frac{1}{24}\)
3 24
4 \(\frac{1}{84}\)
Matrix and Determinant

79095 If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their
corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\)
then a possible value of the determinant of \(A\) is

1 4
2 3
3 2
4 1
Matrix and Determinant

79096 If \(\Delta_{1}=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|\) then \(\frac{\Delta_{1}}{\Delta_{2}}=\)

1 \(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\)
2 abc
3 \(2(a b+b c+c a)\)
4 \((a+b+c)^{2}\)
Matrix and Determinant

79097 If the determinant of the matrix
\(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)

1 0
2 1
3 -1
4 2
Matrix and Determinant

79094 If
\(\begin{array}{lll}
1! & 2! & 3! \\ 2 ! & 3 ! & 4 ! \\ 3 ! & 4 ! & 5 ! \end{array}=2016K \text {, then } K=\)

1 84
2 \(\frac{1}{24}\)
3 24
4 \(\frac{1}{84}\)
Matrix and Determinant

79095 If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their
corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\)
then a possible value of the determinant of \(A\) is

1 4
2 3
3 2
4 1
Matrix and Determinant

79096 If \(\Delta_{1}=\left|\begin{array}{lll}1 & a^{2} & a^{3} \\ 1 & b^{2} & b^{3} \\ 1 & c^{2} & c^{3}\end{array}\right|\) and \(\Delta_{2}=\left|\begin{array}{lll}b c & b+c & 1 \\ c a & c+a & 1 \\ a b & a+b & 1\end{array}\right|\) then \(\frac{\Delta_{1}}{\Delta_{2}}=\)

1 \(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}\)
2 abc
3 \(2(a b+b c+c a)\)
4 \((a+b+c)^{2}\)
Matrix and Determinant

79097 If the determinant of the matrix
\(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)

1 0
2 1
3 -1
4 2
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here