79095
If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\) then a possible value of the determinant of \(A\) is
79097
If the determinant of the matrix \(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)
1 0
2 1
3 -1
4 2
Explanation:
(A) : Given, \(A=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \beta \\ -\mathrm{b} & \alpha & 0\end{array}\right]\) \(|\mathrm{A}|=0\) for all \(\mathrm{a}, \mathrm{b}\) \(\left|\begin{array}{ccc} 0 & a & b \\ -a & 0 & \beta \\ -b & \alpha & 0 \end{array}\right|=0\) \(0-a(0+b \beta)+b(-a \alpha-0)=0\) \(-a b \alpha=a b \beta \Rightarrow \alpha=-\beta \Rightarrow \alpha+\beta=0\)
79095
If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\) then a possible value of the determinant of \(A\) is
79097
If the determinant of the matrix \(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)
1 0
2 1
3 -1
4 2
Explanation:
(A) : Given, \(A=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \beta \\ -\mathrm{b} & \alpha & 0\end{array}\right]\) \(|\mathrm{A}|=0\) for all \(\mathrm{a}, \mathrm{b}\) \(\left|\begin{array}{ccc} 0 & a & b \\ -a & 0 & \beta \\ -b & \alpha & 0 \end{array}\right|=0\) \(0-a(0+b \beta)+b(-a \alpha-0)=0\) \(-a b \alpha=a b \beta \Rightarrow \alpha=-\beta \Rightarrow \alpha+\beta=0\)
79095
If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\) then a possible value of the determinant of \(A\) is
79097
If the determinant of the matrix \(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)
1 0
2 1
3 -1
4 2
Explanation:
(A) : Given, \(A=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \beta \\ -\mathrm{b} & \alpha & 0\end{array}\right]\) \(|\mathrm{A}|=0\) for all \(\mathrm{a}, \mathrm{b}\) \(\left|\begin{array}{ccc} 0 & a & b \\ -a & 0 & \beta \\ -b & \alpha & 0 \end{array}\right|=0\) \(0-a(0+b \beta)+b(-a \alpha-0)=0\) \(-a b \alpha=a b \beta \Rightarrow \alpha=-\beta \Rightarrow \alpha+\beta=0\)
79095
If \(A\) is a \(3 \times 3\) matrix and the matrix obtained by replacing the elements of \(A\) with their corresponding cofactors is \(\left[\begin{array}{lll}1 & -2 & 1 \\ 4 & -5 & -2 \\ -2 & 4 & 1\end{array}\right]\) then a possible value of the determinant of \(A\) is
79097
If the determinant of the matrix \(A=\left[\begin{array}{ccc}0 & a & \mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \boldsymbol{\beta} \\ -\mathbf{b} & \boldsymbol{\alpha} & \mathbf{0}\end{array}\right]\) is zero for all \(a, b\) then \(\alpha+\boldsymbol{\beta}=\)
1 0
2 1
3 -1
4 2
Explanation:
(A) : Given, \(A=\left[\begin{array}{ccc}0 & \mathrm{a} & \mathrm{b} \\ -\mathrm{a} & 0 & \beta \\ -\mathrm{b} & \alpha & 0\end{array}\right]\) \(|\mathrm{A}|=0\) for all \(\mathrm{a}, \mathrm{b}\) \(\left|\begin{array}{ccc} 0 & a & b \\ -a & 0 & \beta \\ -b & \alpha & 0 \end{array}\right|=0\) \(0-a(0+b \beta)+b(-a \alpha-0)=0\) \(-a b \alpha=a b \beta \Rightarrow \alpha=-\beta \Rightarrow \alpha+\beta=0\)