79090
Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)
79090
Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)
79090
Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)
79090
Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)