Determinants and their Properties
Matrix and Determinant

79090 Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)

1 6
2 4
3 2
4 8
Matrix and Determinant

79091 If \(A=\left|\begin{array}{lll}4 & 1 & 4 \\ 4 & 4 & 1\end{array}\right|\), then \(A^{2}-6 A=\)

1 \(27 \mathrm{I}_{3}\)
2 \(5 \mathrm{I}_{3}\)
3 \(20 \mathrm{I}_{3}\)
4 \(30 \mathrm{I}_{3}\)
Matrix and Determinant

79092 \(\left|\begin{array}{cc}\sin ^2 \theta & \cos ^2 \theta \\ -\cos ^2 \theta & \sin ^2 \theta\end{array}\right|=\)______.

1 \(\frac{1}{2}\left(1+\cos ^{2} 2 \theta\right)\)
2 \(\frac{1}{2}\left(1-\sin ^{2} 2 \theta\right)\)
3 \(\cos 2 \theta\)
4 \(\frac{1}{2} \sin ^{2} 2 \theta\)
Matrix and Determinant

79093 If \(k=p+q+r\), then the value of
\(\left|\begin{array}{ccc} \mathbf{k}+\mathbf{r} & \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{k}+\mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{p} & \mathbf{k}+\mathbf{q} \end{array}\right| \text { is }\)

1 \(2 \mathrm{k}^{2}\)
2 \(2 \mathrm{k}^{3}\)
3 \(\mathrm{k}^{3}\)
4 \(3 \mathrm{k}^{2}\)
Matrix and Determinant

79090 Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)

1 6
2 4
3 2
4 8
Matrix and Determinant

79091 If \(A=\left|\begin{array}{lll}4 & 1 & 4 \\ 4 & 4 & 1\end{array}\right|\), then \(A^{2}-6 A=\)

1 \(27 \mathrm{I}_{3}\)
2 \(5 \mathrm{I}_{3}\)
3 \(20 \mathrm{I}_{3}\)
4 \(30 \mathrm{I}_{3}\)
Matrix and Determinant

79092 \(\left|\begin{array}{cc}\sin ^2 \theta & \cos ^2 \theta \\ -\cos ^2 \theta & \sin ^2 \theta\end{array}\right|=\)______.

1 \(\frac{1}{2}\left(1+\cos ^{2} 2 \theta\right)\)
2 \(\frac{1}{2}\left(1-\sin ^{2} 2 \theta\right)\)
3 \(\cos 2 \theta\)
4 \(\frac{1}{2} \sin ^{2} 2 \theta\)
Matrix and Determinant

79093 If \(k=p+q+r\), then the value of
\(\left|\begin{array}{ccc} \mathbf{k}+\mathbf{r} & \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{k}+\mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{p} & \mathbf{k}+\mathbf{q} \end{array}\right| \text { is }\)

1 \(2 \mathrm{k}^{2}\)
2 \(2 \mathrm{k}^{3}\)
3 \(\mathrm{k}^{3}\)
4 \(3 \mathrm{k}^{2}\)
Matrix and Determinant

79090 Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)

1 6
2 4
3 2
4 8
Matrix and Determinant

79091 If \(A=\left|\begin{array}{lll}4 & 1 & 4 \\ 4 & 4 & 1\end{array}\right|\), then \(A^{2}-6 A=\)

1 \(27 \mathrm{I}_{3}\)
2 \(5 \mathrm{I}_{3}\)
3 \(20 \mathrm{I}_{3}\)
4 \(30 \mathrm{I}_{3}\)
Matrix and Determinant

79092 \(\left|\begin{array}{cc}\sin ^2 \theta & \cos ^2 \theta \\ -\cos ^2 \theta & \sin ^2 \theta\end{array}\right|=\)______.

1 \(\frac{1}{2}\left(1+\cos ^{2} 2 \theta\right)\)
2 \(\frac{1}{2}\left(1-\sin ^{2} 2 \theta\right)\)
3 \(\cos 2 \theta\)
4 \(\frac{1}{2} \sin ^{2} 2 \theta\)
Matrix and Determinant

79093 If \(k=p+q+r\), then the value of
\(\left|\begin{array}{ccc} \mathbf{k}+\mathbf{r} & \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{k}+\mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{p} & \mathbf{k}+\mathbf{q} \end{array}\right| \text { is }\)

1 \(2 \mathrm{k}^{2}\)
2 \(2 \mathrm{k}^{3}\)
3 \(\mathrm{k}^{3}\)
4 \(3 \mathrm{k}^{2}\)
Matrix and Determinant

79090 Matrix \(\mathbf{A}_{\mathrm{r}}=\left[\begin{array}{cc}\mathbf{r} & \mathbf{r}-\mathbf{1} \\ \mathbf{r}-\mathbf{1} & \mathbf{r}\end{array}\right] ; \mathbf{r}=\mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots \ldots\).
If \(\sum_{\mathbf{r}=1}^{100}\left|\mathbf{A}_{\mathbf{r}}\right|=(\sqrt{\mathbf{1 0}})^{\mathrm{K}}\), then \(\mathrm{K}=\square ;\left|\mathbf{A}_{\mathbf{r}}\right|=\operatorname{det}\)

1 6
2 4
3 2
4 8
Matrix and Determinant

79091 If \(A=\left|\begin{array}{lll}4 & 1 & 4 \\ 4 & 4 & 1\end{array}\right|\), then \(A^{2}-6 A=\)

1 \(27 \mathrm{I}_{3}\)
2 \(5 \mathrm{I}_{3}\)
3 \(20 \mathrm{I}_{3}\)
4 \(30 \mathrm{I}_{3}\)
Matrix and Determinant

79092 \(\left|\begin{array}{cc}\sin ^2 \theta & \cos ^2 \theta \\ -\cos ^2 \theta & \sin ^2 \theta\end{array}\right|=\)______.

1 \(\frac{1}{2}\left(1+\cos ^{2} 2 \theta\right)\)
2 \(\frac{1}{2}\left(1-\sin ^{2} 2 \theta\right)\)
3 \(\cos 2 \theta\)
4 \(\frac{1}{2} \sin ^{2} 2 \theta\)
Matrix and Determinant

79093 If \(k=p+q+r\), then the value of
\(\left|\begin{array}{ccc} \mathbf{k}+\mathbf{r} & \mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{k}+\mathbf{p} & \mathbf{q} \\ \mathbf{r} & \mathbf{p} & \mathbf{k}+\mathbf{q} \end{array}\right| \text { is }\)

1 \(2 \mathrm{k}^{2}\)
2 \(2 \mathrm{k}^{3}\)
3 \(\mathrm{k}^{3}\)
4 \(3 \mathrm{k}^{2}\)