Determinants and their Properties
Matrix and Determinant

79063 If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to

1 \(\alpha \beta\)
2 \(\frac{1}{\alpha \beta}\)
3 1
4 -1
Matrix and Determinant

79064 Let \(P\) and \(Q\) be \(3 \times 3\) matrices \(P \neq Q\). If \(P^{3}=Q^{3}\) and \(P^{2} Q=Q^{2} P\), then determinant of \(\left(P^{2}+Q^{2}\right)\) is equal to

1 -2
2 1
3 0
4 -1
Matrix and Determinant

79065 If \(A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]\); then for all \(\theta \in\) \(\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)\), det (A) lies in the interval

1 \(\left(\frac{3}{2}, 3\right]\)
2 \(\left[\frac{5}{2}, 4\right)\)
3 \(\left(0, \frac{3}{2}\right]\)
4 \(\left(1, \frac{5}{2}\right]\)
Matrix and Determinant

79066 Let \(A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]\), where \(b>0\). Then, the minimum value of \(\frac{\operatorname{det}(A)}{b}\) is

1 \(-\sqrt{3}\)
2 \(-2 \sqrt{3}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79063 If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to

1 \(\alpha \beta\)
2 \(\frac{1}{\alpha \beta}\)
3 1
4 -1
Matrix and Determinant

79064 Let \(P\) and \(Q\) be \(3 \times 3\) matrices \(P \neq Q\). If \(P^{3}=Q^{3}\) and \(P^{2} Q=Q^{2} P\), then determinant of \(\left(P^{2}+Q^{2}\right)\) is equal to

1 -2
2 1
3 0
4 -1
Matrix and Determinant

79065 If \(A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]\); then for all \(\theta \in\) \(\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)\), det (A) lies in the interval

1 \(\left(\frac{3}{2}, 3\right]\)
2 \(\left[\frac{5}{2}, 4\right)\)
3 \(\left(0, \frac{3}{2}\right]\)
4 \(\left(1, \frac{5}{2}\right]\)
Matrix and Determinant

79066 Let \(A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]\), where \(b>0\). Then, the minimum value of \(\frac{\operatorname{det}(A)}{b}\) is

1 \(-\sqrt{3}\)
2 \(-2 \sqrt{3}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Matrix and Determinant

79063 If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to

1 \(\alpha \beta\)
2 \(\frac{1}{\alpha \beta}\)
3 1
4 -1
Matrix and Determinant

79064 Let \(P\) and \(Q\) be \(3 \times 3\) matrices \(P \neq Q\). If \(P^{3}=Q^{3}\) and \(P^{2} Q=Q^{2} P\), then determinant of \(\left(P^{2}+Q^{2}\right)\) is equal to

1 -2
2 1
3 0
4 -1
Matrix and Determinant

79065 If \(A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]\); then for all \(\theta \in\) \(\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)\), det (A) lies in the interval

1 \(\left(\frac{3}{2}, 3\right]\)
2 \(\left[\frac{5}{2}, 4\right)\)
3 \(\left(0, \frac{3}{2}\right]\)
4 \(\left(1, \frac{5}{2}\right]\)
Matrix and Determinant

79066 Let \(A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]\), where \(b>0\). Then, the minimum value of \(\frac{\operatorname{det}(A)}{b}\) is

1 \(-\sqrt{3}\)
2 \(-2 \sqrt{3}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)
Matrix and Determinant

79063 If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to

1 \(\alpha \beta\)
2 \(\frac{1}{\alpha \beta}\)
3 1
4 -1
Matrix and Determinant

79064 Let \(P\) and \(Q\) be \(3 \times 3\) matrices \(P \neq Q\). If \(P^{3}=Q^{3}\) and \(P^{2} Q=Q^{2} P\), then determinant of \(\left(P^{2}+Q^{2}\right)\) is equal to

1 -2
2 1
3 0
4 -1
Matrix and Determinant

79065 If \(A=\left[\begin{array}{ccc}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]\); then for all \(\theta \in\) \(\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)\), det (A) lies in the interval

1 \(\left(\frac{3}{2}, 3\right]\)
2 \(\left[\frac{5}{2}, 4\right)\)
3 \(\left(0, \frac{3}{2}\right]\)
4 \(\left(1, \frac{5}{2}\right]\)
Matrix and Determinant

79066 Let \(A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]\), where \(b>0\). Then, the minimum value of \(\frac{\operatorname{det}(A)}{b}\) is

1 \(-\sqrt{3}\)
2 \(-2 \sqrt{3}\)
3 \(2 \sqrt{3}\)
4 \(\sqrt{3}\)