79063
If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to
79063
If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to
79063
If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to
79063
If \(\alpha, \beta \neq 0, f(n)=\alpha^{n}+\beta^{n}\) and
\(\left.\left|\begin{array}{ccc} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{array}\right|=\mathbf{k}(1-\alpha)^{2} \right\rvert\,\)
\((1-\beta)^{2}(\alpha-\beta)^{2}\), then \(K\) is equal to