79068
Let \(m\) and \(M\) be respectively the minimum and
maximum values
\(\begin{array}{ccc} \cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\)
Then, the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to
79068
Let \(m\) and \(M\) be respectively the minimum and
maximum values
\(\begin{array}{ccc} \cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\)
Then, the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to
79068
Let \(m\) and \(M\) be respectively the minimum and
maximum values
\(\begin{array}{ccc} \cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\)
Then, the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to
79068
Let \(m\) and \(M\) be respectively the minimum and
maximum values
\(\begin{array}{ccc} \cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\)
Then, the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to
79068
Let \(m\) and \(M\) be respectively the minimum and
maximum values
\(\begin{array}{ccc} \cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x \end{array}\)
Then, the ordered pair \((\mathrm{m}, \mathrm{M})\) is equal to