Determinants and their Properties
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

79042 What is the value of |abcabbccab+cc+aa+b|= ?

1 a3+b3+c3+3abc
2 a3+b3+c33abc
3 a3+b3+c36abc
4 a3+b3+c3+6abc
Matrix and Determinant

79043 Let a and A=[aaayaa+xaaaa] be a matrix.
Then equation detA=16

1 a parabola
2 a circle
3 an ellipse
4 a rectangular hyperbola
Matrix and Determinant

79046 The number of positive roots of the equation
|x372x276x|=0 is :

1 1
2 2
3 3
4 0
Matrix and Determinant

79041 If z1=2+3i,z2=3+2i where i=1 then [z1z2z2Z1][Z1z2z2z1]=

1 13I
2 I
3 26I
4 Zero matrix
Matrix and Determinant

79042 What is the value of |abcabbccab+cc+aa+b|= ?

1 a3+b3+c3+3abc
2 a3+b3+c33abc
3 a3+b3+c36abc
4 a3+b3+c3+6abc
Matrix and Determinant

79043 Let a and A=[aaayaa+xaaaa] be a matrix.
Then equation detA=16

1 a parabola
2 a circle
3 an ellipse
4 a rectangular hyperbola
Matrix and Determinant

79046 The number of positive roots of the equation
|x372x276x|=0 is :

1 1
2 2
3 3
4 0
Matrix and Determinant

79041 If z1=2+3i,z2=3+2i where i=1 then [z1z2z2Z1][Z1z2z2z1]=

1 13I
2 I
3 26I
4 Zero matrix
Matrix and Determinant

79042 What is the value of |abcabbccab+cc+aa+b|= ?

1 a3+b3+c3+3abc
2 a3+b3+c33abc
3 a3+b3+c36abc
4 a3+b3+c3+6abc
Matrix and Determinant

79043 Let a and A=[aaayaa+xaaaa] be a matrix.
Then equation detA=16

1 a parabola
2 a circle
3 an ellipse
4 a rectangular hyperbola
Matrix and Determinant

79046 The number of positive roots of the equation
|x372x276x|=0 is :

1 1
2 2
3 3
4 0
Matrix and Determinant

79041 If z1=2+3i,z2=3+2i where i=1 then [z1z2z2Z1][Z1z2z2z1]=

1 13I
2 I
3 26I
4 Zero matrix
Matrix and Determinant

79042 What is the value of |abcabbccab+cc+aa+b|= ?

1 a3+b3+c3+3abc
2 a3+b3+c33abc
3 a3+b3+c36abc
4 a3+b3+c3+6abc
Matrix and Determinant

79043 Let a and A=[aaayaa+xaaaa] be a matrix.
Then equation detA=16

1 a parabola
2 a circle
3 an ellipse
4 a rectangular hyperbola
Matrix and Determinant

79046 The number of positive roots of the equation
|x372x276x|=0 is :

1 1
2 2
3 3
4 0