79041 If z1=2+3i,z2=3+2i where i=−1 then [z1z2z―2Z―1][Z―1−z2z―2z1]=
(C) :[z1z2z¯2z¯1][z¯1−z2z¯2z1]=[2+3i3+2i−3+2i2−3i][2−3i−3−2i3−2i2+3i](2+3i)(2−3i)+(3+2i)(3−2i)(2+3i)(−3−2i)+(3+2i)(2+3i)(−3+2i)(2−3i)+(2−3i)(3−2i)(−3+2i)(−3−2i)+(2−3i)(2+3i)=|13−13i20013−13i2|=|260026|=26|1001|=26I
79042 What is the value of |abca−bb−cc−ab+cc+aa+b|= ?
(B)|abca−bb−cc−ab+cc+aa+b|R2→R2−R1=|abca−b−ab−c−bc−a−cb+cc+aa+b|=|abc−b−c−ab+cc+aa+b|R3→R3+R2=|abc−b−c−ab+c−bc+a−ca+b−c|=|abc−b−c−acab|=a(−bc+a2)−b(−b2+ac)+c(−ab+c2)=−abc+a3+b3−abc−abc+c3=a3+b3+c3−3abc
79043 Let a∈ and A=[aaa−yaa+xaaaa] be a matrix.Then equation detA=16
(D): |aaa−yaa+xaaaa|=16=a|1aa−y1a+xa1aa|=16⇒=a3|111−y/a11+x/a1111|=16=a3[(1+x/a−1)−1(1−1)+(1−y/a)(1−1−x/a)]=16=a3[x/a−x/a+xy/a2]=16=xy=16aA rectangular hyperbola
79046 The number of positive roots of the equation|x372x276x|=0 is :
(B) : The number of positive roots|x372x276x|=0x(x2−12)−3(2x−14)+7(12−7x)=0x3−12x−6x+42+84−49x=0x3−67x+126=0(x−2)(x2+2x−63)=0(x−2)(x−7)(x+9)=0n=2,7,−9There are two positive roots.