79037
If \(A\) is square matrix of order 3 , then consider the following statements.
I. If \(|\mathbf{A}|=\mathbf{0}\), then \(|\operatorname{Adj} \mathbf{A}|=\mathbf{0}\)
II. If \(|\mathbf{A}| \neq \mathbf{0}\), then \(\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}\)
Which of the above statements is/are true?
79038
If \(a_{1}, a_{2}, \ldots . . . a_{n}, \ldots .\). are in G.P. and \(a i,>0\) from each 1 , then the determinant
\(\Delta=\left|\begin{array}{ccc} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a \end{array}\right|\) is equal to
79037
If \(A\) is square matrix of order 3 , then consider the following statements.
I. If \(|\mathbf{A}|=\mathbf{0}\), then \(|\operatorname{Adj} \mathbf{A}|=\mathbf{0}\)
II. If \(|\mathbf{A}| \neq \mathbf{0}\), then \(\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}\)
Which of the above statements is/are true?
79038
If \(a_{1}, a_{2}, \ldots . . . a_{n}, \ldots .\). are in G.P. and \(a i,>0\) from each 1 , then the determinant
\(\Delta=\left|\begin{array}{ccc} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a \end{array}\right|\) is equal to
79037
If \(A\) is square matrix of order 3 , then consider the following statements.
I. If \(|\mathbf{A}|=\mathbf{0}\), then \(|\operatorname{Adj} \mathbf{A}|=\mathbf{0}\)
II. If \(|\mathbf{A}| \neq \mathbf{0}\), then \(\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}\)
Which of the above statements is/are true?
79038
If \(a_{1}, a_{2}, \ldots . . . a_{n}, \ldots .\). are in G.P. and \(a i,>0\) from each 1 , then the determinant
\(\Delta=\left|\begin{array}{ccc} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a \end{array}\right|\) is equal to
79037
If \(A\) is square matrix of order 3 , then consider the following statements.
I. If \(|\mathbf{A}|=\mathbf{0}\), then \(|\operatorname{Adj} \mathbf{A}|=\mathbf{0}\)
II. If \(|\mathbf{A}| \neq \mathbf{0}\), then \(\left|\mathbf{A}^{-1}\right|=|\mathbf{A}|^{-1}\)
Which of the above statements is/are true?
79038
If \(a_{1}, a_{2}, \ldots . . . a_{n}, \ldots .\). are in G.P. and \(a i,>0\) from each 1 , then the determinant
\(\Delta=\left|\begin{array}{ccc} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a \end{array}\right|\) is equal to