79035 Which let \(f(x)=\left|\begin{array}{ccc}\mathbf{a} & -1 & 0 \\ \mathbf{a x} & \mathbf{a} & -1 \\ \mathrm{ax}^{2} & \mathbf{a x} & \mathbf{a}\end{array}\right|, \mathbf{a} \in \mathbf{R}\). Then the sum of which the squares of all the values of a for \(2 f^{\prime}(\mathbf{1 0})-f^{\prime}(\mathbf{5})+\mathbf{1 0 0}=\mathbf{0}\) is :
79036
Let \(S=\{\sqrt{n}: 1 \leq n \leq 50\) and \(n\) is odd \(\}\) Let \(a \in S\)
and \(A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]\)
If \(\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda\), then \(\boldsymbol{\lambda}\) is equal to
79035 Which let \(f(x)=\left|\begin{array}{ccc}\mathbf{a} & -1 & 0 \\ \mathbf{a x} & \mathbf{a} & -1 \\ \mathrm{ax}^{2} & \mathbf{a x} & \mathbf{a}\end{array}\right|, \mathbf{a} \in \mathbf{R}\). Then the sum of which the squares of all the values of a for \(2 f^{\prime}(\mathbf{1 0})-f^{\prime}(\mathbf{5})+\mathbf{1 0 0}=\mathbf{0}\) is :
79036
Let \(S=\{\sqrt{n}: 1 \leq n \leq 50\) and \(n\) is odd \(\}\) Let \(a \in S\)
and \(A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]\)
If \(\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda\), then \(\boldsymbol{\lambda}\) is equal to
79035 Which let \(f(x)=\left|\begin{array}{ccc}\mathbf{a} & -1 & 0 \\ \mathbf{a x} & \mathbf{a} & -1 \\ \mathrm{ax}^{2} & \mathbf{a x} & \mathbf{a}\end{array}\right|, \mathbf{a} \in \mathbf{R}\). Then the sum of which the squares of all the values of a for \(2 f^{\prime}(\mathbf{1 0})-f^{\prime}(\mathbf{5})+\mathbf{1 0 0}=\mathbf{0}\) is :
79036
Let \(S=\{\sqrt{n}: 1 \leq n \leq 50\) and \(n\) is odd \(\}\) Let \(a \in S\)
and \(A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]\)
If \(\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda\), then \(\boldsymbol{\lambda}\) is equal to
79035 Which let \(f(x)=\left|\begin{array}{ccc}\mathbf{a} & -1 & 0 \\ \mathbf{a x} & \mathbf{a} & -1 \\ \mathrm{ax}^{2} & \mathbf{a x} & \mathbf{a}\end{array}\right|, \mathbf{a} \in \mathbf{R}\). Then the sum of which the squares of all the values of a for \(2 f^{\prime}(\mathbf{1 0})-f^{\prime}(\mathbf{5})+\mathbf{1 0 0}=\mathbf{0}\) is :
79036
Let \(S=\{\sqrt{n}: 1 \leq n \leq 50\) and \(n\) is odd \(\}\) Let \(a \in S\)
and \(A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]\)
If \(\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda\), then \(\boldsymbol{\lambda}\) is equal to
79035 Which let \(f(x)=\left|\begin{array}{ccc}\mathbf{a} & -1 & 0 \\ \mathbf{a x} & \mathbf{a} & -1 \\ \mathrm{ax}^{2} & \mathbf{a x} & \mathbf{a}\end{array}\right|, \mathbf{a} \in \mathbf{R}\). Then the sum of which the squares of all the values of a for \(2 f^{\prime}(\mathbf{1 0})-f^{\prime}(\mathbf{5})+\mathbf{1 0 0}=\mathbf{0}\) is :
79036
Let \(S=\{\sqrt{n}: 1 \leq n \leq 50\) and \(n\) is odd \(\}\) Let \(a \in S\)
and \(A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]\)
If \(\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda\), then \(\boldsymbol{\lambda}\) is equal to