79028 An equilateral triangle has each side equal to ' \(a\) '. If the coordinates of its vertices are \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\), then what is the square of the determinant \(\left|\begin{array}{lll}\mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1\end{array}\right|\) equal to ?
79028 An equilateral triangle has each side equal to ' \(a\) '. If the coordinates of its vertices are \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\), then what is the square of the determinant \(\left|\begin{array}{lll}\mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1\end{array}\right|\) equal to ?
79028 An equilateral triangle has each side equal to ' \(a\) '. If the coordinates of its vertices are \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\), then what is the square of the determinant \(\left|\begin{array}{lll}\mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1\end{array}\right|\) equal to ?
79028 An equilateral triangle has each side equal to ' \(a\) '. If the coordinates of its vertices are \(\left(x_{1}, y_{1}\right)\), \(\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)\), then what is the square of the determinant \(\left|\begin{array}{lll}\mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1\end{array}\right|\) equal to ?