Solution of System of Linear Equation Using Matrix
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78997 The system \(x+4 y-2 z=3,3 x+y+5 z=7,2 x\) \(+3 y+z=5\) has

1 infinite number of solutions
2 unique solution
3 trivial solution
4 no solution
Matrix and Determinant

78998 \(\left|\begin{array}{lll}
1 & \mathbf{a} & \mathbf{b}+\mathbf{c} \\ \mathbf{1} & \mathbf{b} & \mathbf{c}+\mathbf{a} \\ \mathbf{1} & \mathbf{c} & \mathbf{a}+\mathbf{b} \end{array}\right|=\)

1 1
2 0
3 \((1-a)(1-b)(1-c)\)
4 \(a+b+c\)
5 \(2(a+b+c)\)
Matrix and Determinant

78984 Let \(A\) be a square matrix, all of whose entries are integers, Then, which one of the following is true?

1 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) need not exist
2 If \(\operatorname{det}(A)= \pm 1\), then \(A^{-1}\) exists but all its entries are not necessarily integers
3 If \(\operatorname{det}(\mathrm{A}) \neq \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are not-integers
4 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are integers
Matrix and Determinant

78991 Let \(A\) be a \(3 \times 3\) matrix and \(B\) be its adj matrix. If \(|B|=64\), then \(|A|\) is equal to

1 \(\pm 2\)
2 \(\pm 4\)
3 \(\pm 8\)
4 \(\pm 12\)
Matrix and Determinant

78997 The system \(x+4 y-2 z=3,3 x+y+5 z=7,2 x\) \(+3 y+z=5\) has

1 infinite number of solutions
2 unique solution
3 trivial solution
4 no solution
Matrix and Determinant

78998 \(\left|\begin{array}{lll}
1 & \mathbf{a} & \mathbf{b}+\mathbf{c} \\ \mathbf{1} & \mathbf{b} & \mathbf{c}+\mathbf{a} \\ \mathbf{1} & \mathbf{c} & \mathbf{a}+\mathbf{b} \end{array}\right|=\)

1 1
2 0
3 \((1-a)(1-b)(1-c)\)
4 \(a+b+c\)
5 \(2(a+b+c)\)
Matrix and Determinant

78984 Let \(A\) be a square matrix, all of whose entries are integers, Then, which one of the following is true?

1 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) need not exist
2 If \(\operatorname{det}(A)= \pm 1\), then \(A^{-1}\) exists but all its entries are not necessarily integers
3 If \(\operatorname{det}(\mathrm{A}) \neq \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are not-integers
4 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are integers
Matrix and Determinant

78991 Let \(A\) be a \(3 \times 3\) matrix and \(B\) be its adj matrix. If \(|B|=64\), then \(|A|\) is equal to

1 \(\pm 2\)
2 \(\pm 4\)
3 \(\pm 8\)
4 \(\pm 12\)
Matrix and Determinant

78997 The system \(x+4 y-2 z=3,3 x+y+5 z=7,2 x\) \(+3 y+z=5\) has

1 infinite number of solutions
2 unique solution
3 trivial solution
4 no solution
Matrix and Determinant

78998 \(\left|\begin{array}{lll}
1 & \mathbf{a} & \mathbf{b}+\mathbf{c} \\ \mathbf{1} & \mathbf{b} & \mathbf{c}+\mathbf{a} \\ \mathbf{1} & \mathbf{c} & \mathbf{a}+\mathbf{b} \end{array}\right|=\)

1 1
2 0
3 \((1-a)(1-b)(1-c)\)
4 \(a+b+c\)
5 \(2(a+b+c)\)
Matrix and Determinant

78984 Let \(A\) be a square matrix, all of whose entries are integers, Then, which one of the following is true?

1 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) need not exist
2 If \(\operatorname{det}(A)= \pm 1\), then \(A^{-1}\) exists but all its entries are not necessarily integers
3 If \(\operatorname{det}(\mathrm{A}) \neq \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are not-integers
4 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are integers
Matrix and Determinant

78991 Let \(A\) be a \(3 \times 3\) matrix and \(B\) be its adj matrix. If \(|B|=64\), then \(|A|\) is equal to

1 \(\pm 2\)
2 \(\pm 4\)
3 \(\pm 8\)
4 \(\pm 12\)
Matrix and Determinant

78997 The system \(x+4 y-2 z=3,3 x+y+5 z=7,2 x\) \(+3 y+z=5\) has

1 infinite number of solutions
2 unique solution
3 trivial solution
4 no solution
Matrix and Determinant

78998 \(\left|\begin{array}{lll}
1 & \mathbf{a} & \mathbf{b}+\mathbf{c} \\ \mathbf{1} & \mathbf{b} & \mathbf{c}+\mathbf{a} \\ \mathbf{1} & \mathbf{c} & \mathbf{a}+\mathbf{b} \end{array}\right|=\)

1 1
2 0
3 \((1-a)(1-b)(1-c)\)
4 \(a+b+c\)
5 \(2(a+b+c)\)
Matrix and Determinant

78984 Let \(A\) be a square matrix, all of whose entries are integers, Then, which one of the following is true?

1 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) need not exist
2 If \(\operatorname{det}(A)= \pm 1\), then \(A^{-1}\) exists but all its entries are not necessarily integers
3 If \(\operatorname{det}(\mathrm{A}) \neq \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are not-integers
4 If \(\operatorname{det}(\mathrm{A})= \pm 1\), then \(\mathrm{A}^{-1}\) exists and all its entries are integers
Matrix and Determinant

78991 Let \(A\) be a \(3 \times 3\) matrix and \(B\) be its adj matrix. If \(|B|=64\), then \(|A|\) is equal to

1 \(\pm 2\)
2 \(\pm 4\)
3 \(\pm 8\)
4 \(\pm 12\)