Solution of System of Linear Equation Using Matrix
Matrix and Determinant

78992 If \(M\) is any square matrix of order 3 over \(R\) and if \(M^{\prime}\) be the transpose of \(M\), then adj \(\left(M^{\prime}\right)\) \((\operatorname{adj} \mathbf{M})^{\prime}\) is equal to

1 \(\mathrm{M}\)
2 \(\mathrm{M}^{\prime}\)
3 null matrix
4 identity matrix
Matrix and Determinant

78961 Inverse of a diagonal non-singular matrix is

1 diagonal matrix
2 scalar matrix
3 skew symmetric matrix
4 zero matrix
Matrix and Determinant

78987 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj (A) is equal to

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|A|^{n+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|\mathrm{A}|^{\mathrm{n}+2}\)
Matrix and Determinant

78992 If \(M\) is any square matrix of order 3 over \(R\) and if \(M^{\prime}\) be the transpose of \(M\), then adj \(\left(M^{\prime}\right)\) \((\operatorname{adj} \mathbf{M})^{\prime}\) is equal to

1 \(\mathrm{M}\)
2 \(\mathrm{M}^{\prime}\)
3 null matrix
4 identity matrix
Matrix and Determinant

78961 Inverse of a diagonal non-singular matrix is

1 diagonal matrix
2 scalar matrix
3 skew symmetric matrix
4 zero matrix
Matrix and Determinant

78987 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj (A) is equal to

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|A|^{n+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|\mathrm{A}|^{\mathrm{n}+2}\)
Matrix and Determinant

78992 If \(M\) is any square matrix of order 3 over \(R\) and if \(M^{\prime}\) be the transpose of \(M\), then adj \(\left(M^{\prime}\right)\) \((\operatorname{adj} \mathbf{M})^{\prime}\) is equal to

1 \(\mathrm{M}\)
2 \(\mathrm{M}^{\prime}\)
3 null matrix
4 identity matrix
Matrix and Determinant

78961 Inverse of a diagonal non-singular matrix is

1 diagonal matrix
2 scalar matrix
3 skew symmetric matrix
4 zero matrix
Matrix and Determinant

78987 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj (A) is equal to

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|A|^{n+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|\mathrm{A}|^{\mathrm{n}+2}\)