78980 If matrix \(A=\left|\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right|\) and its inverse is denoted by \(A^{-1}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|\), then the value of \(a_{23}\) is
78980 If matrix \(A=\left|\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right|\) and its inverse is denoted by \(A^{-1}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|\), then the value of \(a_{23}\) is
78980 If matrix \(A=\left|\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right|\) and its inverse is denoted by \(A^{-1}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|\), then the value of \(a_{23}\) is
78980 If matrix \(A=\left|\begin{array}{ccc}1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7\end{array}\right|\) and its inverse is denoted by \(A^{-1}=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|\), then the value of \(a_{23}\) is