78903
If \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \cdot \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\)
\(\left[\begin{array}{cc} 1 & 78 \\ 0 & 1 \end{array}\right] \text {, then the inverse of }\left[\begin{array}{ll}
1 & n \\ 0 & 1 \end{array}\right] \text { is }\)
78903
If \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \cdot \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\)
\(\left[\begin{array}{cc} 1 & 78 \\ 0 & 1 \end{array}\right] \text {, then the inverse of }\left[\begin{array}{ll}
1 & n \\ 0 & 1 \end{array}\right] \text { is }\)
78903
If \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \cdot \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\)
\(\left[\begin{array}{cc} 1 & 78 \\ 0 & 1 \end{array}\right] \text {, then the inverse of }\left[\begin{array}{ll}
1 & n \\ 0 & 1 \end{array}\right] \text { is }\)
78903
If \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \cdots \cdot \cdot\left[\begin{array}{cc}1 & n-1 \\ 0 & 1\end{array}\right]=\)
\(\left[\begin{array}{cc} 1 & 78 \\ 0 & 1 \end{array}\right] \text {, then the inverse of }\left[\begin{array}{ll}
1 & n \\ 0 & 1 \end{array}\right] \text { is }\)