78904
If \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) is the inverse of a \(3 \times 3\) matrix \(A\), then the sum of all values of \(\alpha\) for which \(\operatorname{det}(\mathrm{A})+\mathbf{1}=\mathbf{0}\), is
1 0
2 -1
3 1
4 2
Explanation:
(C) : Given that, \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) And, \(\quad \operatorname{det}(\mathrm{A})+1=0\) We know that, \(\quad \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)}\) So, \(\quad \frac{1}{\operatorname{det}(\mathrm{B})}+1=0\) \(\operatorname{det}(B)=-1\) \(5(-2-3)-2 \alpha(0-\alpha)+1(0-2 \alpha)=-1\) \(-25+2 \alpha^{2}-2 \alpha=-1\) \(2 \alpha^{2}-2 \alpha-24=0\) \((\alpha-4)(\alpha+3)=0\) \(\alpha=4,-3\) So, required sum of all values of \(\alpha\) is \(4-3=1\)
JEE Main-2019-12.04.2019
Matrix and Determinant
78905
If \(A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\), then the matrix \(A^{-50}\) when \(\theta=\frac{\pi}{12}\), is equal to
78904
If \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) is the inverse of a \(3 \times 3\) matrix \(A\), then the sum of all values of \(\alpha\) for which \(\operatorname{det}(\mathrm{A})+\mathbf{1}=\mathbf{0}\), is
1 0
2 -1
3 1
4 2
Explanation:
(C) : Given that, \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) And, \(\quad \operatorname{det}(\mathrm{A})+1=0\) We know that, \(\quad \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)}\) So, \(\quad \frac{1}{\operatorname{det}(\mathrm{B})}+1=0\) \(\operatorname{det}(B)=-1\) \(5(-2-3)-2 \alpha(0-\alpha)+1(0-2 \alpha)=-1\) \(-25+2 \alpha^{2}-2 \alpha=-1\) \(2 \alpha^{2}-2 \alpha-24=0\) \((\alpha-4)(\alpha+3)=0\) \(\alpha=4,-3\) So, required sum of all values of \(\alpha\) is \(4-3=1\)
JEE Main-2019-12.04.2019
Matrix and Determinant
78905
If \(A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\), then the matrix \(A^{-50}\) when \(\theta=\frac{\pi}{12}\), is equal to
78904
If \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) is the inverse of a \(3 \times 3\) matrix \(A\), then the sum of all values of \(\alpha\) for which \(\operatorname{det}(\mathrm{A})+\mathbf{1}=\mathbf{0}\), is
1 0
2 -1
3 1
4 2
Explanation:
(C) : Given that, \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) And, \(\quad \operatorname{det}(\mathrm{A})+1=0\) We know that, \(\quad \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)}\) So, \(\quad \frac{1}{\operatorname{det}(\mathrm{B})}+1=0\) \(\operatorname{det}(B)=-1\) \(5(-2-3)-2 \alpha(0-\alpha)+1(0-2 \alpha)=-1\) \(-25+2 \alpha^{2}-2 \alpha=-1\) \(2 \alpha^{2}-2 \alpha-24=0\) \((\alpha-4)(\alpha+3)=0\) \(\alpha=4,-3\) So, required sum of all values of \(\alpha\) is \(4-3=1\)
JEE Main-2019-12.04.2019
Matrix and Determinant
78905
If \(A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\), then the matrix \(A^{-50}\) when \(\theta=\frac{\pi}{12}\), is equal to
78904
If \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) is the inverse of a \(3 \times 3\) matrix \(A\), then the sum of all values of \(\alpha\) for which \(\operatorname{det}(\mathrm{A})+\mathbf{1}=\mathbf{0}\), is
1 0
2 -1
3 1
4 2
Explanation:
(C) : Given that, \(B=\left[\begin{array}{ccc}5 & 2 \alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1\end{array}\right]\) And, \(\quad \operatorname{det}(\mathrm{A})+1=0\) We know that, \(\quad \operatorname{det}(A)=\frac{1}{\operatorname{det}(B)}\) So, \(\quad \frac{1}{\operatorname{det}(\mathrm{B})}+1=0\) \(\operatorname{det}(B)=-1\) \(5(-2-3)-2 \alpha(0-\alpha)+1(0-2 \alpha)=-1\) \(-25+2 \alpha^{2}-2 \alpha=-1\) \(2 \alpha^{2}-2 \alpha-24=0\) \((\alpha-4)(\alpha+3)=0\) \(\alpha=4,-3\) So, required sum of all values of \(\alpha\) is \(4-3=1\)
JEE Main-2019-12.04.2019
Matrix and Determinant
78905
If \(A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\), then the matrix \(A^{-50}\) when \(\theta=\frac{\pi}{12}\), is equal to