Adjoint and Inverse of Matrices
Matrix and Determinant

78879 If \(A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{ccc}-2 & -3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
2 \(\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-2 & 3 & 4 \\ 2 & -2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
4 None of these
Matrix and Determinant

78880 If the matrix \(A\) is such that
\(A\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]\), then \(A\) is

1 \(\left[\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]\)
4 \(\left[\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right]\)
Matrix and Determinant

78881 \(A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right], 8 A^{-1}\) is equal to

1 \(\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & 2 \\ 3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\)
Matrix and Determinant

78882 The inverse of the matrix \(\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\) is

1 \(\frac{1}{5}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\)
2 \(\frac{1}{5}\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]\)
3 \(\frac{2}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
4 \(\frac{1}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
Matrix and Determinant

78883 If \(\left[\begin{array}{ll}x & y^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right]\), then \(\left[\begin{array}{ll}x & y \\ 2 & 0\end{array}\right]^{-1}\) is equal to

1 \(\left[\begin{array}{cc} 0 & -2 \\ -2 & 1 \end{array}\right]\)
2 \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\)
3 \(\left[\begin{array}{cc} 0 & -8 \\ -2 & 1 \end{array}\right]\)
4 \(\left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{array}\right]\)
Matrix and Determinant

78879 If \(A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{ccc}-2 & -3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
2 \(\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-2 & 3 & 4 \\ 2 & -2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
4 None of these
Matrix and Determinant

78880 If the matrix \(A\) is such that
\(A\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]\), then \(A\) is

1 \(\left[\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]\)
4 \(\left[\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right]\)
Matrix and Determinant

78881 \(A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right], 8 A^{-1}\) is equal to

1 \(\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & 2 \\ 3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\)
Matrix and Determinant

78882 The inverse of the matrix \(\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\) is

1 \(\frac{1}{5}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\)
2 \(\frac{1}{5}\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]\)
3 \(\frac{2}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
4 \(\frac{1}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
Matrix and Determinant

78883 If \(\left[\begin{array}{ll}x & y^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right]\), then \(\left[\begin{array}{ll}x & y \\ 2 & 0\end{array}\right]^{-1}\) is equal to

1 \(\left[\begin{array}{cc} 0 & -2 \\ -2 & 1 \end{array}\right]\)
2 \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\)
3 \(\left[\begin{array}{cc} 0 & -8 \\ -2 & 1 \end{array}\right]\)
4 \(\left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{array}\right]\)
Matrix and Determinant

78879 If \(A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{ccc}-2 & -3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
2 \(\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-2 & 3 & 4 \\ 2 & -2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
4 None of these
Matrix and Determinant

78880 If the matrix \(A\) is such that
\(A\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]\), then \(A\) is

1 \(\left[\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]\)
4 \(\left[\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right]\)
Matrix and Determinant

78881 \(A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right], 8 A^{-1}\) is equal to

1 \(\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & 2 \\ 3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\)
Matrix and Determinant

78882 The inverse of the matrix \(\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\) is

1 \(\frac{1}{5}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\)
2 \(\frac{1}{5}\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]\)
3 \(\frac{2}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
4 \(\frac{1}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
Matrix and Determinant

78883 If \(\left[\begin{array}{ll}x & y^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right]\), then \(\left[\begin{array}{ll}x & y \\ 2 & 0\end{array}\right]^{-1}\) is equal to

1 \(\left[\begin{array}{cc} 0 & -2 \\ -2 & 1 \end{array}\right]\)
2 \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\)
3 \(\left[\begin{array}{cc} 0 & -8 \\ -2 & 1 \end{array}\right]\)
4 \(\left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{array}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78879 If \(A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{ccc}-2 & -3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
2 \(\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-2 & 3 & 4 \\ 2 & -2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
4 None of these
Matrix and Determinant

78880 If the matrix \(A\) is such that
\(A\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]\), then \(A\) is

1 \(\left[\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]\)
4 \(\left[\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right]\)
Matrix and Determinant

78881 \(A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right], 8 A^{-1}\) is equal to

1 \(\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & 2 \\ 3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\)
Matrix and Determinant

78882 The inverse of the matrix \(\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\) is

1 \(\frac{1}{5}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\)
2 \(\frac{1}{5}\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]\)
3 \(\frac{2}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
4 \(\frac{1}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
Matrix and Determinant

78883 If \(\left[\begin{array}{ll}x & y^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right]\), then \(\left[\begin{array}{ll}x & y \\ 2 & 0\end{array}\right]^{-1}\) is equal to

1 \(\left[\begin{array}{cc} 0 & -2 \\ -2 & 1 \end{array}\right]\)
2 \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\)
3 \(\left[\begin{array}{cc} 0 & -8 \\ -2 & 1 \end{array}\right]\)
4 \(\left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{array}\right]\)
Matrix and Determinant

78879 If \(A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 2\end{array}\right]\), then \(A^{-1}\) is equal to

1 \(\left[\begin{array}{ccc}-2 & -3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
2 \(\left[\begin{array}{ccc}2 & 3 & 4 \\ 2 & 2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
3 \(\left[\begin{array}{ccc}-2 & 3 & 4 \\ 2 & -2 & -3 \\ 1 & 2 & -2\end{array}\right]\)
4 None of these
Matrix and Determinant

78880 If the matrix \(A\) is such that
\(A\left[\begin{array}{cc}-1 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-4 & 1 \\ 7 & 7\end{array}\right]\), then \(A\) is

1 \(\left[\begin{array}{cc}1 & 1 \\ 2 & -3\end{array}\right]\)
2 \(\left[\begin{array}{cc}1 & 1 \\ -2 & 3\end{array}\right]\)
3 \(\left[\begin{array}{cc}1 & -1 \\ 2 & 3\end{array}\right]\)
4 \(\left[\begin{array}{cc}-1 & 1 \\ 2 & 3\end{array}\right]\)
Matrix and Determinant

78881 \(A=\left[\begin{array}{cc}-1 & 2 \\ 3 & 2\end{array}\right], 8 A^{-1}\) is equal to

1 \(\left[\begin{array}{ll}1 & 3 \\ 2 & 2\end{array}\right]\)
2 \(\left[\begin{array}{cc}-2 & 2 \\ 3 & 1\end{array}\right]\)
3 \(\left[\begin{array}{cc}-1 & 3 \\ 2 & 2\end{array}\right]\)
4 \(\left[\begin{array}{cc}1 & 3 \\ 2 & -2\end{array}\right]\)
Matrix and Determinant

78882 The inverse of the matrix \(\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\) is

1 \(\frac{1}{5}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]\)
2 \(\frac{1}{5}\left[\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right]\)
3 \(\frac{2}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
4 \(\frac{1}{5}\left[\begin{array}{cc}-3 & 1 \\ 1 & 2\end{array}\right]\)
Matrix and Determinant

78883 If \(\left[\begin{array}{ll}x & y^{3} \\ 2 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 8 \\ 2 & 0\end{array}\right]\), then \(\left[\begin{array}{ll}x & y \\ 2 & 0\end{array}\right]^{-1}\) is equal to

1 \(\left[\begin{array}{cc} 0 & -2 \\ -2 & 1 \end{array}\right]\)
2 \(\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]\)
3 \(\left[\begin{array}{cc} 0 & -8 \\ -2 & 1 \end{array}\right]\)
4 \(\left[\begin{array}{cc} 0 & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{4} \end{array}\right]\)