Adjoint and Inverse of Matrices
Matrix and Determinant

78875 \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{3}-4 A^{2}-6 A\) is equal to :

1 0
2 A
3 \(-\mathrm{A}\)
4 I
Matrix and Determinant

78876 If \(A\) is a square matrix such that \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is equal to

1 4
2 16
3 64
4 256
Matrix and Determinant

78877 If \(A=\left(\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right)\) then \(\operatorname{adj}\left(3 A^{2}+12 A\right)\) is equal to

1 \(\left[\begin{array}{rr}72 & 84 \\ -63 & 51\end{array}\right]\)
2 \(\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]\)
3 \(\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]\)
4 \(\left[\begin{array}{rr}72 & -63 \\ -84 & 51\end{array}\right]\)
Matrix and Determinant

78878 If \(a, b, c\) and \(d\) are real number such that \(a^{2}+\) \(b^{2}+c^{2}+d^{2}=1\) and \(A=\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]\) then \(A^{-}\) 1 equals to

1 \(\left[\begin{array}{rr}a+i b & -c-i d \\ c-i d & a-i b\end{array}\right]\)
2 \(\left[\begin{array}{rr}a-i b & c+i d \\ -c+i d & a+i b\end{array}\right]\)
3 \(\left[\begin{array}{rr}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]\)
4 \(\left[\begin{array}{ccc} a+i b & c+i d \\ c-i d & a-i b\end{array}\right]\)
Matrix and Determinant

78875 \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{3}-4 A^{2}-6 A\) is equal to :

1 0
2 A
3 \(-\mathrm{A}\)
4 I
Matrix and Determinant

78876 If \(A\) is a square matrix such that \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is equal to

1 4
2 16
3 64
4 256
Matrix and Determinant

78877 If \(A=\left(\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right)\) then \(\operatorname{adj}\left(3 A^{2}+12 A\right)\) is equal to

1 \(\left[\begin{array}{rr}72 & 84 \\ -63 & 51\end{array}\right]\)
2 \(\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]\)
3 \(\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]\)
4 \(\left[\begin{array}{rr}72 & -63 \\ -84 & 51\end{array}\right]\)
Matrix and Determinant

78878 If \(a, b, c\) and \(d\) are real number such that \(a^{2}+\) \(b^{2}+c^{2}+d^{2}=1\) and \(A=\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]\) then \(A^{-}\) 1 equals to

1 \(\left[\begin{array}{rr}a+i b & -c-i d \\ c-i d & a-i b\end{array}\right]\)
2 \(\left[\begin{array}{rr}a-i b & c+i d \\ -c+i d & a+i b\end{array}\right]\)
3 \(\left[\begin{array}{rr}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]\)
4 \(\left[\begin{array}{ccc} a+i b & c+i d \\ c-i d & a-i b\end{array}\right]\)
Matrix and Determinant

78875 \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{3}-4 A^{2}-6 A\) is equal to :

1 0
2 A
3 \(-\mathrm{A}\)
4 I
Matrix and Determinant

78876 If \(A\) is a square matrix such that \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is equal to

1 4
2 16
3 64
4 256
Matrix and Determinant

78877 If \(A=\left(\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right)\) then \(\operatorname{adj}\left(3 A^{2}+12 A\right)\) is equal to

1 \(\left[\begin{array}{rr}72 & 84 \\ -63 & 51\end{array}\right]\)
2 \(\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]\)
3 \(\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]\)
4 \(\left[\begin{array}{rr}72 & -63 \\ -84 & 51\end{array}\right]\)
Matrix and Determinant

78878 If \(a, b, c\) and \(d\) are real number such that \(a^{2}+\) \(b^{2}+c^{2}+d^{2}=1\) and \(A=\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]\) then \(A^{-}\) 1 equals to

1 \(\left[\begin{array}{rr}a+i b & -c-i d \\ c-i d & a-i b\end{array}\right]\)
2 \(\left[\begin{array}{rr}a-i b & c+i d \\ -c+i d & a+i b\end{array}\right]\)
3 \(\left[\begin{array}{rr}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]\)
4 \(\left[\begin{array}{ccc} a+i b & c+i d \\ c-i d & a-i b\end{array}\right]\)
Matrix and Determinant

78875 \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{3}-4 A^{2}-6 A\) is equal to :

1 0
2 A
3 \(-\mathrm{A}\)
4 I
Matrix and Determinant

78876 If \(A\) is a square matrix such that \(A(\operatorname{adj} A)=\) \(\left[\begin{array}{lll}4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4\end{array}\right]\), then \(\operatorname{det}(\operatorname{adj} A)\) is equal to

1 4
2 16
3 64
4 256
Matrix and Determinant

78877 If \(A=\left(\begin{array}{rr}2 & -3 \\ -4 & 1\end{array}\right)\) then \(\operatorname{adj}\left(3 A^{2}+12 A\right)\) is equal to

1 \(\left[\begin{array}{rr}72 & 84 \\ -63 & 51\end{array}\right]\)
2 \(\left[\begin{array}{ll}51 & 63 \\ 84 & 72\end{array}\right]\)
3 \(\left[\begin{array}{ll}51 & 84 \\ 63 & 72\end{array}\right]\)
4 \(\left[\begin{array}{rr}72 & -63 \\ -84 & 51\end{array}\right]\)
Matrix and Determinant

78878 If \(a, b, c\) and \(d\) are real number such that \(a^{2}+\) \(b^{2}+c^{2}+d^{2}=1\) and \(A=\left[\begin{array}{rr}a+i b & c+i d \\ -c+i d & a-i b\end{array}\right]\) then \(A^{-}\) 1 equals to

1 \(\left[\begin{array}{rr}a+i b & -c-i d \\ c-i d & a-i b\end{array}\right]\)
2 \(\left[\begin{array}{rr}a-i b & c+i d \\ -c+i d & a+i b\end{array}\right]\)
3 \(\left[\begin{array}{rr}a-i b & -c-i d \\ c-i d & a+i b\end{array}\right]\)
4 \(\left[\begin{array}{ccc} a+i b & c+i d \\ c-i d & a-i b\end{array}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here