Adjoint and Inverse of Matrices
Matrix and Determinant

78871 If \(A\) is a matrix such \(\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\) then \(A\) is equal to

1 \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{ll}2 & 1\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]\)
4 \(\left[\begin{array}{r}2 \\ -3\end{array}\right]\)
Matrix and Determinant

78872 \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] \Rightarrow A^{2}-2 A=\)

1 \(\mathrm{A}^{-1}\)
2 \(-\mathrm{A}^{-1}\)
3 I
4 \(-\mathrm{I}\)
Matrix and Determinant

78873 If A is a zero square matrix of order \(n\) with \(\operatorname{det}(I+A) \neq 0\) and \(A^{3}=0\), where, \(I, O\) are unit and null matrices of order \(n \times n\) respectively, then \((I+A)^{-1}\) is equal to

1 \(\mathrm{I}-\mathrm{A}+\mathrm{A}^{2}\)
2 \(I+A+A^{2}\)
3 \(\mathrm{I}+\mathrm{A}^{-1}\)
4 \(\mathrm{I}+\mathrm{A}\)
Matrix and Determinant

78874 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj \(A\) is equal to:

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|\mathrm{A}|^{\mathrm{n}+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|A|^{\mathrm{n}+2}\)
Matrix and Determinant

78871 If \(A\) is a matrix such \(\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\) then \(A\) is equal to

1 \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{ll}2 & 1\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]\)
4 \(\left[\begin{array}{r}2 \\ -3\end{array}\right]\)
Matrix and Determinant

78872 \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] \Rightarrow A^{2}-2 A=\)

1 \(\mathrm{A}^{-1}\)
2 \(-\mathrm{A}^{-1}\)
3 I
4 \(-\mathrm{I}\)
Matrix and Determinant

78873 If A is a zero square matrix of order \(n\) with \(\operatorname{det}(I+A) \neq 0\) and \(A^{3}=0\), where, \(I, O\) are unit and null matrices of order \(n \times n\) respectively, then \((I+A)^{-1}\) is equal to

1 \(\mathrm{I}-\mathrm{A}+\mathrm{A}^{2}\)
2 \(I+A+A^{2}\)
3 \(\mathrm{I}+\mathrm{A}^{-1}\)
4 \(\mathrm{I}+\mathrm{A}\)
Matrix and Determinant

78874 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj \(A\) is equal to:

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|\mathrm{A}|^{\mathrm{n}+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|A|^{\mathrm{n}+2}\)
Matrix and Determinant

78871 If \(A\) is a matrix such \(\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\) then \(A\) is equal to

1 \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{ll}2 & 1\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]\)
4 \(\left[\begin{array}{r}2 \\ -3\end{array}\right]\)
Matrix and Determinant

78872 \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] \Rightarrow A^{2}-2 A=\)

1 \(\mathrm{A}^{-1}\)
2 \(-\mathrm{A}^{-1}\)
3 I
4 \(-\mathrm{I}\)
Matrix and Determinant

78873 If A is a zero square matrix of order \(n\) with \(\operatorname{det}(I+A) \neq 0\) and \(A^{3}=0\), where, \(I, O\) are unit and null matrices of order \(n \times n\) respectively, then \((I+A)^{-1}\) is equal to

1 \(\mathrm{I}-\mathrm{A}+\mathrm{A}^{2}\)
2 \(I+A+A^{2}\)
3 \(\mathrm{I}+\mathrm{A}^{-1}\)
4 \(\mathrm{I}+\mathrm{A}\)
Matrix and Determinant

78874 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj \(A\) is equal to:

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|\mathrm{A}|^{\mathrm{n}+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|A|^{\mathrm{n}+2}\)
Matrix and Determinant

78871 If \(A\) is a matrix such \(\left[\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right] A\left[\begin{array}{ll}1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\) then \(A\) is equal to

1 \(\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\)
2 \(\left[\begin{array}{ll}2 & 1\end{array}\right]\)
3 \(\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]\)
4 \(\left[\begin{array}{r}2 \\ -3\end{array}\right]\)
Matrix and Determinant

78872 \(A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] \Rightarrow A^{2}-2 A=\)

1 \(\mathrm{A}^{-1}\)
2 \(-\mathrm{A}^{-1}\)
3 I
4 \(-\mathrm{I}\)
Matrix and Determinant

78873 If A is a zero square matrix of order \(n\) with \(\operatorname{det}(I+A) \neq 0\) and \(A^{3}=0\), where, \(I, O\) are unit and null matrices of order \(n \times n\) respectively, then \((I+A)^{-1}\) is equal to

1 \(\mathrm{I}-\mathrm{A}+\mathrm{A}^{2}\)
2 \(I+A+A^{2}\)
3 \(\mathrm{I}+\mathrm{A}^{-1}\)
4 \(\mathrm{I}+\mathrm{A}\)
Matrix and Determinant

78874 If \(A\) is an invertible matrix of order \(n\), then the determinant of adj \(A\) is equal to:

1 \(|\mathrm{A}|^{\mathrm{n}}\)
2 \(|\mathrm{A}|^{\mathrm{n}+1}\)
3 \(|\mathrm{A}|^{\mathrm{n}-1}\)
4 \(|A|^{\mathrm{n}+2}\)