Matrix and Determinant
78870
\(\quad \mathbf{A}(\alpha, \beta)=\left[\begin{array}{ccc}\cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & e^{\beta}\end{array}\right]=[\mathbf{A}(\alpha, \beta)]^{-1}=\)
1 \(\mathrm{A}(-\alpha, \beta)\)
2 \(\mathrm{A}(-\alpha,-\beta)\)
3 \(\mathrm{A}(\alpha,-\beta)\)
4 \(\mathrm{A}(\alpha, \beta)\)
Explanation:
Exp:(b)
Given,
\(A(\alpha, \beta)=\left[\begin{array}{ccc} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & \mathrm{e}^\beta \end{array}\right]\)
\(|A|=\mathrm{e}^\beta\)
Co-factor matrix is \(\left[\begin{array}{ccc}\mathrm{e}^\beta \cos \alpha & \mathrm{e}^\beta \sin \alpha & 0 \\ -\mathrm{e}^\beta \sin \alpha & \mathrm{e}^\beta \cos \alpha & 0 \\ 0 & 0 & 1\end{array}\right]\)
\(\operatorname{adj} A=\left[\begin{array}{ccc} \mathrm{e}^\beta \cos \alpha & -e^{-\beta} \sin \alpha & 0 \\ \mathrm{e}^\beta \sin \alpha & \mathrm{e}^\beta \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right]\)
\(\therefore A(\alpha, \beta)^{-1}=\frac{1}{\mathrm{e}^\beta}\left[\begin{array}{ccc} \mathrm{e}^\beta \cos \alpha & -\mathrm{e}^\beta \sin \alpha & 0 \\ \mathrm{e}^\beta \sin \alpha & \mathrm{e}^\beta \cos \alpha & 0 \\ 0 & 0 & 1 \end{array}\right]=A(-\alpha,-\beta)\)