Adjoint and Inverse of Matrices
Matrix and Determinant

78862 If \(A\) is a square matrix of order \(n \times n\), then adj \((\operatorname{adj} \mathbf{A})\) is equal to

1 \(|\mathrm{A}|{ }^{\mathrm{n}} \mathrm{A}\)
2 \(|\mathrm{A}|^{\mathrm{n}-1} \mathrm{~A}\)
3 \(|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}\)
4 \(\left.\mathrm{A}\right|^{\mathrm{n}-3} \mathrm{~A}\)
Matrix and Determinant

78863 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=k A\), then \(k\) is equal to

1 19
2 \(\frac{1}{19}\)
3 -19
4 \(-\frac{1}{19}\)
Matrix and Determinant

78864 If \(A=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\) and \(A+A^{-1}=I\), then \(\alpha=\)

1 0
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{4}\)
Matrix and Determinant

78865 If \(Q\) is the inverse of \(A\), when \(A=\)
\(\left[\begin{array}{rrr}
1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right] \text { and } 10 \times Q=\left[\begin{array}{lrl}
4 & 2 & 2 \\ -5 & 0 & \mathbf{x} \\ 1 & -1 & 3 \end{array}\right] \text {, }\)
find \(x=\)

1 2
2 3
3 4
4 5
Matrix and Determinant

78866 If \(k\) is one of the roots of the equation \(x^{2}-25 x+\) \(24=0\) such that \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]\) is a nonsingular matrix, then \(A^{-1}=\left[\begin{array}{lll}1 & 1 & k\end{array}\right]\)

1 \(-\frac{1}{46}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
2 \(-\frac{1}{92}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
3 \(-\frac{1}{46}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
4 \(-\frac{1}{92}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
Matrix and Determinant

78862 If \(A\) is a square matrix of order \(n \times n\), then adj \((\operatorname{adj} \mathbf{A})\) is equal to

1 \(|\mathrm{A}|{ }^{\mathrm{n}} \mathrm{A}\)
2 \(|\mathrm{A}|^{\mathrm{n}-1} \mathrm{~A}\)
3 \(|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}\)
4 \(\left.\mathrm{A}\right|^{\mathrm{n}-3} \mathrm{~A}\)
Matrix and Determinant

78863 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=k A\), then \(k\) is equal to

1 19
2 \(\frac{1}{19}\)
3 -19
4 \(-\frac{1}{19}\)
Matrix and Determinant

78864 If \(A=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\) and \(A+A^{-1}=I\), then \(\alpha=\)

1 0
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{4}\)
Matrix and Determinant

78865 If \(Q\) is the inverse of \(A\), when \(A=\)
\(\left[\begin{array}{rrr}
1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right] \text { and } 10 \times Q=\left[\begin{array}{lrl}
4 & 2 & 2 \\ -5 & 0 & \mathbf{x} \\ 1 & -1 & 3 \end{array}\right] \text {, }\)
find \(x=\)

1 2
2 3
3 4
4 5
Matrix and Determinant

78866 If \(k\) is one of the roots of the equation \(x^{2}-25 x+\) \(24=0\) such that \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]\) is a nonsingular matrix, then \(A^{-1}=\left[\begin{array}{lll}1 & 1 & k\end{array}\right]\)

1 \(-\frac{1}{46}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
2 \(-\frac{1}{92}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
3 \(-\frac{1}{46}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
4 \(-\frac{1}{92}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
Matrix and Determinant

78862 If \(A\) is a square matrix of order \(n \times n\), then adj \((\operatorname{adj} \mathbf{A})\) is equal to

1 \(|\mathrm{A}|{ }^{\mathrm{n}} \mathrm{A}\)
2 \(|\mathrm{A}|^{\mathrm{n}-1} \mathrm{~A}\)
3 \(|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}\)
4 \(\left.\mathrm{A}\right|^{\mathrm{n}-3} \mathrm{~A}\)
Matrix and Determinant

78863 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=k A\), then \(k\) is equal to

1 19
2 \(\frac{1}{19}\)
3 -19
4 \(-\frac{1}{19}\)
Matrix and Determinant

78864 If \(A=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\) and \(A+A^{-1}=I\), then \(\alpha=\)

1 0
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{4}\)
Matrix and Determinant

78865 If \(Q\) is the inverse of \(A\), when \(A=\)
\(\left[\begin{array}{rrr}
1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right] \text { and } 10 \times Q=\left[\begin{array}{lrl}
4 & 2 & 2 \\ -5 & 0 & \mathbf{x} \\ 1 & -1 & 3 \end{array}\right] \text {, }\)
find \(x=\)

1 2
2 3
3 4
4 5
Matrix and Determinant

78866 If \(k\) is one of the roots of the equation \(x^{2}-25 x+\) \(24=0\) such that \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]\) is a nonsingular matrix, then \(A^{-1}=\left[\begin{array}{lll}1 & 1 & k\end{array}\right]\)

1 \(-\frac{1}{46}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
2 \(-\frac{1}{92}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
3 \(-\frac{1}{46}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
4 \(-\frac{1}{92}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
Matrix and Determinant

78862 If \(A\) is a square matrix of order \(n \times n\), then adj \((\operatorname{adj} \mathbf{A})\) is equal to

1 \(|\mathrm{A}|{ }^{\mathrm{n}} \mathrm{A}\)
2 \(|\mathrm{A}|^{\mathrm{n}-1} \mathrm{~A}\)
3 \(|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}\)
4 \(\left.\mathrm{A}\right|^{\mathrm{n}-3} \mathrm{~A}\)
Matrix and Determinant

78863 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=k A\), then \(k\) is equal to

1 19
2 \(\frac{1}{19}\)
3 -19
4 \(-\frac{1}{19}\)
Matrix and Determinant

78864 If \(A=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\) and \(A+A^{-1}=I\), then \(\alpha=\)

1 0
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{4}\)
Matrix and Determinant

78865 If \(Q\) is the inverse of \(A\), when \(A=\)
\(\left[\begin{array}{rrr}
1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right] \text { and } 10 \times Q=\left[\begin{array}{lrl}
4 & 2 & 2 \\ -5 & 0 & \mathbf{x} \\ 1 & -1 & 3 \end{array}\right] \text {, }\)
find \(x=\)

1 2
2 3
3 4
4 5
Matrix and Determinant

78866 If \(k\) is one of the roots of the equation \(x^{2}-25 x+\) \(24=0\) such that \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]\) is a nonsingular matrix, then \(A^{-1}=\left[\begin{array}{lll}1 & 1 & k\end{array}\right]\)

1 \(-\frac{1}{46}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
2 \(-\frac{1}{92}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
3 \(-\frac{1}{46}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
4 \(-\frac{1}{92}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
Matrix and Determinant

78862 If \(A\) is a square matrix of order \(n \times n\), then adj \((\operatorname{adj} \mathbf{A})\) is equal to

1 \(|\mathrm{A}|{ }^{\mathrm{n}} \mathrm{A}\)
2 \(|\mathrm{A}|^{\mathrm{n}-1} \mathrm{~A}\)
3 \(|\mathrm{A}|^{\mathrm{n}-2} \mathrm{~A}\)
4 \(\left.\mathrm{A}\right|^{\mathrm{n}-3} \mathrm{~A}\)
Matrix and Determinant

78863 If \(A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]\) be such that \(A^{-1}=k A\), then \(k\) is equal to

1 19
2 \(\frac{1}{19}\)
3 -19
4 \(-\frac{1}{19}\)
Matrix and Determinant

78864 If \(A=\left[\begin{array}{rr}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right]\) and \(A+A^{-1}=I\), then \(\alpha=\)

1 0
2 \(\frac{\pi}{3}\)
3 \(\frac{\pi}{6}\)
4 \(\frac{\pi}{4}\)
Matrix and Determinant

78865 If \(Q\) is the inverse of \(A\), when \(A=\)
\(\left[\begin{array}{rrr}
1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{array}\right] \text { and } 10 \times Q=\left[\begin{array}{lrl}
4 & 2 & 2 \\ -5 & 0 & \mathbf{x} \\ 1 & -1 & 3 \end{array}\right] \text {, }\)
find \(x=\)

1 2
2 3
3 4
4 5
Matrix and Determinant

78866 If \(k\) is one of the roots of the equation \(x^{2}-25 x+\) \(24=0\) such that \(A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]\) is a nonsingular matrix, then \(A^{-1}=\left[\begin{array}{lll}1 & 1 & k\end{array}\right]\)

1 \(-\frac{1}{46}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)
2 \(-\frac{1}{92}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
3 \(-\frac{1}{46}\left[\begin{array}{ccc}45 & -47 & 4 \\ -69 & 23 & 0 \\ 1 & 1 & -4\end{array}\right]\)
4 \(-\frac{1}{92}\left[\begin{array}{ccc}90 & -94 & 8 \\ -138 & 46 & 0 \\ 2 & 2 & -8\end{array}\right]\)