Adjoint and Inverse of Matrices
Matrix and Determinant

78853 Let \(A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\) and \(B=\left[\begin{array}{rrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]\), then
the value of \(A^{\prime} B A\) is :

1 1224
2 1042
3 540
4 539
Matrix and Determinant

78855 Let \(A=\left[\begin{array}{rr}m & \mathbf{n} \\ \mathbf{p} & \mathbf{q}\end{array}\right], d=|\mathbf{A}| \neq 0\) and \(|\mathbf{A}-\mathbf{d}(\operatorname{Adj} A)|\) \(=0\). Then

1 \(1+\mathrm{d}^{2}=\mathrm{m}^{2}+\mathrm{q}^{2}\)
2 \(1+\mathrm{d}^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
3 \((1+\mathrm{d})^{2}=2 \mathrm{~m}^{2}+\mathrm{q}^{2}\)
4 \((1+\mathrm{d})^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
Matrix and Determinant

78856 Let \(A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right]\). If \(B=I-{ }^{5} \mathbf{C}_{1}(\operatorname{adj} A)+{ }^{5} \mathbf{C}_{2}\) \((\operatorname{adjA})^{2}-\ldots .{ }^{-5} \mathbf{C}_{5}(\operatorname{adjA})^{5}\), then the sum of all elements of the matrix \(B\) is :

1 -5
2 -6
3 -7
4 -8
Matrix and Determinant

78857 Let \(A\) be a \(3 \times 3\) invertible matrix. If \(|\operatorname{adj}(24 A)|=\operatorname{adj}(\mathbf{a d j}(2 A)) \mid\), then \(|A|^{2}\) is equal to :

1 \(6^{6}\)
2 \(2^{12}\)
3 \(2^{6}\)
4 1
Matrix and Determinant

78853 Let \(A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\) and \(B=\left[\begin{array}{rrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]\), then
the value of \(A^{\prime} B A\) is :

1 1224
2 1042
3 540
4 539
Matrix and Determinant

78855 Let \(A=\left[\begin{array}{rr}m & \mathbf{n} \\ \mathbf{p} & \mathbf{q}\end{array}\right], d=|\mathbf{A}| \neq 0\) and \(|\mathbf{A}-\mathbf{d}(\operatorname{Adj} A)|\) \(=0\). Then

1 \(1+\mathrm{d}^{2}=\mathrm{m}^{2}+\mathrm{q}^{2}\)
2 \(1+\mathrm{d}^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
3 \((1+\mathrm{d})^{2}=2 \mathrm{~m}^{2}+\mathrm{q}^{2}\)
4 \((1+\mathrm{d})^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
Matrix and Determinant

78856 Let \(A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right]\). If \(B=I-{ }^{5} \mathbf{C}_{1}(\operatorname{adj} A)+{ }^{5} \mathbf{C}_{2}\) \((\operatorname{adjA})^{2}-\ldots .{ }^{-5} \mathbf{C}_{5}(\operatorname{adjA})^{5}\), then the sum of all elements of the matrix \(B\) is :

1 -5
2 -6
3 -7
4 -8
Matrix and Determinant

78857 Let \(A\) be a \(3 \times 3\) invertible matrix. If \(|\operatorname{adj}(24 A)|=\operatorname{adj}(\mathbf{a d j}(2 A)) \mid\), then \(|A|^{2}\) is equal to :

1 \(6^{6}\)
2 \(2^{12}\)
3 \(2^{6}\)
4 1
Matrix and Determinant

78853 Let \(A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\) and \(B=\left[\begin{array}{rrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]\), then
the value of \(A^{\prime} B A\) is :

1 1224
2 1042
3 540
4 539
Matrix and Determinant

78855 Let \(A=\left[\begin{array}{rr}m & \mathbf{n} \\ \mathbf{p} & \mathbf{q}\end{array}\right], d=|\mathbf{A}| \neq 0\) and \(|\mathbf{A}-\mathbf{d}(\operatorname{Adj} A)|\) \(=0\). Then

1 \(1+\mathrm{d}^{2}=\mathrm{m}^{2}+\mathrm{q}^{2}\)
2 \(1+\mathrm{d}^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
3 \((1+\mathrm{d})^{2}=2 \mathrm{~m}^{2}+\mathrm{q}^{2}\)
4 \((1+\mathrm{d})^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
Matrix and Determinant

78856 Let \(A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right]\). If \(B=I-{ }^{5} \mathbf{C}_{1}(\operatorname{adj} A)+{ }^{5} \mathbf{C}_{2}\) \((\operatorname{adjA})^{2}-\ldots .{ }^{-5} \mathbf{C}_{5}(\operatorname{adjA})^{5}\), then the sum of all elements of the matrix \(B\) is :

1 -5
2 -6
3 -7
4 -8
Matrix and Determinant

78857 Let \(A\) be a \(3 \times 3\) invertible matrix. If \(|\operatorname{adj}(24 A)|=\operatorname{adj}(\mathbf{a d j}(2 A)) \mid\), then \(|A|^{2}\) is equal to :

1 \(6^{6}\)
2 \(2^{12}\)
3 \(2^{6}\)
4 1
Matrix and Determinant

78853 Let \(A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\) and \(B=\left[\begin{array}{rrr}9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2}\end{array}\right]\), then
the value of \(A^{\prime} B A\) is :

1 1224
2 1042
3 540
4 539
Matrix and Determinant

78855 Let \(A=\left[\begin{array}{rr}m & \mathbf{n} \\ \mathbf{p} & \mathbf{q}\end{array}\right], d=|\mathbf{A}| \neq 0\) and \(|\mathbf{A}-\mathbf{d}(\operatorname{Adj} A)|\) \(=0\). Then

1 \(1+\mathrm{d}^{2}=\mathrm{m}^{2}+\mathrm{q}^{2}\)
2 \(1+\mathrm{d}^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
3 \((1+\mathrm{d})^{2}=2 \mathrm{~m}^{2}+\mathrm{q}^{2}\)
4 \((1+\mathrm{d})^{2}=(\mathrm{m}+\mathrm{q})^{2}\)
Matrix and Determinant

78856 Let \(A=\left[\begin{array}{cc}2 & -1 \\ 0 & 2\end{array}\right]\). If \(B=I-{ }^{5} \mathbf{C}_{1}(\operatorname{adj} A)+{ }^{5} \mathbf{C}_{2}\) \((\operatorname{adjA})^{2}-\ldots .{ }^{-5} \mathbf{C}_{5}(\operatorname{adjA})^{5}\), then the sum of all elements of the matrix \(B\) is :

1 -5
2 -6
3 -7
4 -8
Matrix and Determinant

78857 Let \(A\) be a \(3 \times 3\) invertible matrix. If \(|\operatorname{adj}(24 A)|=\operatorname{adj}(\mathbf{a d j}(2 A)) \mid\), then \(|A|^{2}\) is equal to :

1 \(6^{6}\)
2 \(2^{12}\)
3 \(2^{6}\)
4 1