Adjoint and Inverse of Matrices
Matrix and Determinant

78827 If \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{2}-4 A=\)

1 \(3 \mathrm{I}\)
2 \(4 \mathrm{I}\)
3 \(5 \mathrm{I}\)
4 None of these
Matrix and Determinant

78828 If \(A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\), then value of \(\alpha\) for which \(\mathrm{A}^{2}=\mathrm{B}\), is

1 1
2 -1
3 4
4 No real values
Matrix and Determinant

78829 Let \(A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)\), then the values of \(t\) for
which inverse of \(A\) does not exist

1 \(-2,1\)
2 3,2
3 \(2,-3\)
4 \(3,-1\)
Matrix and Determinant

78830 If matrix \(A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]\) and \(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(\mathrm{k}\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78831 If the matrix \(A=\left|\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2\end{array}\right|\) then adj (adj \(\left.A\right)\) is equal to

1 \(\left|\begin{array}{ccc}12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
2 \(\left|\begin{array}{ccc}12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24\end{array}\right|\)
3 \(\left|\begin{array}{ccc}12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
4 None of these
Matrix and Determinant

78827 If \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{2}-4 A=\)

1 \(3 \mathrm{I}\)
2 \(4 \mathrm{I}\)
3 \(5 \mathrm{I}\)
4 None of these
Matrix and Determinant

78828 If \(A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\), then value of \(\alpha\) for which \(\mathrm{A}^{2}=\mathrm{B}\), is

1 1
2 -1
3 4
4 No real values
Matrix and Determinant

78829 Let \(A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)\), then the values of \(t\) for
which inverse of \(A\) does not exist

1 \(-2,1\)
2 3,2
3 \(2,-3\)
4 \(3,-1\)
Matrix and Determinant

78830 If matrix \(A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]\) and \(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(\mathrm{k}\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78831 If the matrix \(A=\left|\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2\end{array}\right|\) then adj (adj \(\left.A\right)\) is equal to

1 \(\left|\begin{array}{ccc}12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
2 \(\left|\begin{array}{ccc}12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24\end{array}\right|\)
3 \(\left|\begin{array}{ccc}12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
4 None of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Matrix and Determinant

78827 If \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{2}-4 A=\)

1 \(3 \mathrm{I}\)
2 \(4 \mathrm{I}\)
3 \(5 \mathrm{I}\)
4 None of these
Matrix and Determinant

78828 If \(A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\), then value of \(\alpha\) for which \(\mathrm{A}^{2}=\mathrm{B}\), is

1 1
2 -1
3 4
4 No real values
Matrix and Determinant

78829 Let \(A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)\), then the values of \(t\) for
which inverse of \(A\) does not exist

1 \(-2,1\)
2 3,2
3 \(2,-3\)
4 \(3,-1\)
Matrix and Determinant

78830 If matrix \(A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]\) and \(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(\mathrm{k}\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78831 If the matrix \(A=\left|\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2\end{array}\right|\) then adj (adj \(\left.A\right)\) is equal to

1 \(\left|\begin{array}{ccc}12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
2 \(\left|\begin{array}{ccc}12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24\end{array}\right|\)
3 \(\left|\begin{array}{ccc}12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
4 None of these
Matrix and Determinant

78827 If \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{2}-4 A=\)

1 \(3 \mathrm{I}\)
2 \(4 \mathrm{I}\)
3 \(5 \mathrm{I}\)
4 None of these
Matrix and Determinant

78828 If \(A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\), then value of \(\alpha\) for which \(\mathrm{A}^{2}=\mathrm{B}\), is

1 1
2 -1
3 4
4 No real values
Matrix and Determinant

78829 Let \(A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)\), then the values of \(t\) for
which inverse of \(A\) does not exist

1 \(-2,1\)
2 3,2
3 \(2,-3\)
4 \(3,-1\)
Matrix and Determinant

78830 If matrix \(A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]\) and \(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(\mathrm{k}\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78831 If the matrix \(A=\left|\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2\end{array}\right|\) then adj (adj \(\left.A\right)\) is equal to

1 \(\left|\begin{array}{ccc}12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
2 \(\left|\begin{array}{ccc}12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24\end{array}\right|\)
3 \(\left|\begin{array}{ccc}12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
4 None of these
Matrix and Determinant

78827 If \(A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\) then \(A^{2}-4 A=\)

1 \(3 \mathrm{I}\)
2 \(4 \mathrm{I}\)
3 \(5 \mathrm{I}\)
4 None of these
Matrix and Determinant

78828 If \(A=\left[\begin{array}{ll}\alpha & 0 \\ 1 & 1\end{array}\right]\) and \(B=\left[\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right]\), then value of \(\alpha\) for which \(\mathrm{A}^{2}=\mathrm{B}\), is

1 1
2 -1
3 4
4 No real values
Matrix and Determinant

78829 Let \(A=\left(\begin{array}{ccc}1 & 3 & 2 \\ 2 & 5 & t \\ 4 & 7-t & -6\end{array}\right)\), then the values of \(t\) for
which inverse of \(A\) does not exist

1 \(-2,1\)
2 3,2
3 \(2,-3\)
4 \(3,-1\)
Matrix and Determinant

78830 If matrix \(A=\left[\begin{array}{ccc}3 & -2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1\end{array}\right]\) and \(A^{-1}=\frac{1}{k} \operatorname{adj}(A)\), then \(\mathrm{k}\) is

1 7
2 -7
3 15
4 -11
Matrix and Determinant

78831 If the matrix \(A=\left|\begin{array}{ccc}1 & 3 & 1 \\ -1 & 2 & -3 \\ 0 & 1 & 2\end{array}\right|\) then adj (adj \(\left.A\right)\) is equal to

1 \(\left|\begin{array}{ccc}12 & 36 & 12 \\ -12 & 24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
2 \(\left|\begin{array}{ccc}12 & 26 & -12 \\ 24 & 36 & -36 \\ 0 & 12 & -24\end{array}\right|\)
3 \(\left|\begin{array}{ccc}12 & -12 & 36 \\ 24 & -24 & -36 \\ 0 & 12 & 24\end{array}\right|\)
4 None of these