78822 If A=[12x010001] and B=[1−2y010001] and AB =I3, then x+y equals
(A) : We have,AB=[12x010001][1−2y010001]=[10x+y010001]Now, AB=I3 (given)⇒[10x+y010001]=[100010001]Comparing both sides,Hence, x+y=0
78823 The matrix A satisfying the equation[1301]A=[110−1] is
(C) : Given that,[1301]A=[110−1]Let, B=[1301] and C=[110−1]Now,BA=CA=B−1CWe know that,B−1=adj(B)|B||B|=1−0=1adj(B)=[1−301]B−1=11[1−301]=[1−301]Hence,A=B−1CA=[1−301][110−1]⇒A=[140−1]
78824 If A=[cosxsinx−sinxcosx] and A⋅AdjA=k[1001], then the value of k is
(B) : Given that,A=[cosxsinx−sinxcosx]A. AdjA=k[1001]Adj(A)=[cosx−sinxsinxcosx]A⋅AdjA=[cosxsinx−sinxcosx][cosx−sinxsinxcosx]A. AdjA=[1001]So, A. Adj A=k[1001] (given)[1001]=[k00k]On comparing corresponding elements on the both side we get -k=1
78826 If A=[1−230],B=[−1423] and C=[01−10] then 5 A−3 B+2C is equal to
(B) : Given that,A=[1−230],B=[−1423] and C=[01−10]Now, 5 A−3 B+2C=5[1−230]−3[−1423]+2[01−10]=[5−10150]−[−31269]+[02−20]=[8−229−9]+[02−20]=[8−207−9]